Knowledge of the nuclear power plants (NPPs) containment atmosphere composition in the course of a severe accident is crucial for the effective design and positioning of the hydrogen explosion countermeasures. This composition strongly depends on containment flows which may include turbulent jet mixing in the presence of buoyancy, jet impingement onto the stratified layer, stable stratification layer erosion, steam condensation on the walls of the containment, condensation by emergency spray systems and other processes. Thus, in modeling of containment flows, it is essential to correctly predict these effects. In particular, a proper prediction of the turbulent jet behavior before it reaches the stably stratified layer is critical for the correct prediction of its mixing and impingement. Accordingly, validation study is presented for free neutral and buoyancy-affected turbulent jets, based on well-known experimental results from the literature. This study allows for the choice of a proper turbulence model to be applied for containment flow simulations. Furthermore, the jet behavior strongly depends on the issuing geometry. A comparative study of erosion process for the conditions similar to the ones of international benchmark exercise (IBE-3) is presented for different jet nozzle shapes.

References

References
1.
Agrawal
,
N.
,
Prabhakar
,
A.
, and
Das
,
S. K.
,
2015
, “
Hydrogen Distribution in Nuclear Reactor Containment During Accidents and Associated Heat and Mass Transfer Issues—A Review
,”
Heat Transfer Eng.
,
36
(
10
), pp.
859
879
.
2.
Marshall
,
B. W.
,
1986
, “
Hydrogen: Air: Steam Flammability Limits and Combustion Characteristics in the FITS Vessel
,” Sandia National Laboratories,
Report No. NUREG/CR-3468, SAND84 -0383, R3
.
3.
Bentaib
,
A.
,
Meynet
,
N.
, and
Bleyer
,
A.
,
2015
, “
Overview on Hydrogen Risk Research and Development Activities: Methodology and Open Issues
,”
Nucl. Eng. Technol.
,
47
(
1
), pp.
26
32
.
4.
Koroll
,
G. W.
,
Lau
,
D. W. P.
,
Dewit
,
W. A.
, and
Graham
,
W. R. C.
,
1995
, “
Catalytic Hydrogen Recombination for Nuclear Containment
,” Whiteshell Laboratories, Pinawa, MB, Canada,
AECL Report No. CA9800140
.
5.
Jakel
,
C.
,
Kelm
,
S.
,
Reinecke
,
E. A.
,
Verfondern
,
K.
, and
Allelein
,
H. J.
,
2014
, “
Validation Strategy for CFD Models Describing Safety-Relevant Scenarios Including LH2/GH2 Release and the Use of Passive Auto-Catalytic Recombiners
,”
Int. J. Hydrogen Energy
,
39
(
35
), pp.
20371
20377
.
6.
Karwat
,
H.
,
Bardelay
,
J.
,
Hashimoto
,
T.
,
Koroll
,
G. W.
,
Krause
,
M.
,
L'Hériteau
,
J. P.
,
Lundström
,
P.
,
Notafrancesco
,
A.
,
Royl
,
P.
,
Schwinges
,
B.
,
Tezuka
,
H.
, and
Tills
,
J.
,
1999
, “
SOAR on Containment Thermalhydraulics and Hydrogen Distribution
,” OECD/NEA, Report No. NEA/CSNI/R(1999)16.
7.
Ishay
,
L.
,
Bieder
,
U.
,
Ziskind
,
G.
, and
Rashkovan
,
A.
,
2015
, “
Turbulent Jet Erosion of a Stably Stratified Gas Layer in a Nuclear Reactor Test Containment
,”
Nucl. Eng. Des.
,
292
, pp.
138
148
.
8.
Mi
,
J.
,
Nathan
,
G. J.
, and
Luxtun
,
R. E.
,
2000
, “
Centreline Mixing Characteristics of Jets From Nine Differently Shaped Nozzles
,”
Exp. Fluids
,
28
(
1
), pp.
93
94
.
9.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.
10.
Studer
,
E.
,
Brinster
,
J.
,
Tkatschenko
,
I.
,
Mignot
,
G.
,
Paladino
,
D.
, and
Andreani
,
M.
,
2012
, “
Interaction of a Light Gas Stratified Layer With an Air Jet Coming From Below: Large Scale Experiments and Scaling Issues
,”
Nucl. Eng. Des.
,
253
, pp.
406
412
.
11.
Ishay
,
L.
,
Ziskind
,
G.
,
Bieder
,
U.
, and
Rashkovan
,
A.
,
2015
, “
Nuclear Reactor Containment Flows—Modelling of Stably Stratified Layer Erosion by a Turbulent Jet
,”
NURETH-16
:
The 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics
, Chicago, IL, Aug. 30–Sept. 4.
12.
Hussein
,
H. J.
,
Capp
,
S. P.
, and
George
,
W. K.
,
1994
,“
Velocity Measurements in a High-Reynolds-Number, Momentum-Conserving, Axisymmetric, Turbulent Jet
,”
J. Fluid Mech.
,
258
, pp.
31
75
.
13.
George
,
W. K.
,
1989
, “
The Self-Preservation of Turbulent Flows and its Relation to Initial Conditions and Coherent Structures
,”
Advances in Turbulence
,
Hemisphere
,
New York
, pp.
39
73
.
14.
Uddin
,
M.
, and
Pollard
,
A.
,
2007
, “
Self-Similarity of Coflowing Jets: The Virtual Origin
,”
Phys. Fluids
,
19
(
6
), p.
068103
.
15.
Xu
,
G.
, and
Antonia
,
R. A.
,
2002
, “
Effect of Different Initial Conditions on a Turbulent Round Free Jet
,”
Exp. Fluids
,
33
(
5
), pp.
677
693
.
16.
Mi
,
J.
,
Nathan
,
G. J.
, and
Nobes
,
D. S.
,
2001
, “
Mixing Characteristics of Axisymmetric Free Jets From a Contoured Nozzle, an Orifice Plate and a Pipe
,”
ASME J. Fluids Eng.
,
123
(
4
), pp.
878
883
.
17.
Capp
,
S. P.
,
1983
, “
Experimental Investigation of the Turbulent Axisymmetric Jet
,”
Ph.D. thesis
, University of Buffalo, Buffalo, NY.
18.
Pope
,
S. B.
,
1978
, “
An Explanation of the Turbulent Round-Jet/Plane-Jet Anomaly
,”
AIAA J.
,
16
(
3
), pp.
279
281
.
19.
Ouellette
,
P.
, and
Hill
,
P. G.
,
2000
, “
Turbulent Transient Gas Injections
,”
ASME J. Fluids Eng.
,
122
(
4
), pp.
743
753
.
20.
Dowling
,
D. R.
, and
Dimotakis
,
P. E.
,
1990
, “
Similarity of the Concentration Field of Gas-Phase Turbulent Jets
,”
J. Fluid Mech.
,
218
, pp.
109
141
.
21.
Dowling
,
D. R.
,
1988
, “
Mixing in Gas Phase Turbulent Jets
,”
Ph.D. thesis
, California Institute of Technology, Pasadena, CA, pp.
1
267
.
22.
Dahm
,
W. A.
, and
Dimotakis
,
P. E.
,
1987
, “
Measurements of Entrainment and Mixing in Turbulent Jets
,”
AIAA J.
,
25
(
9
), pp.
1216
1223
.
23.
Becker
,
H. A.
,
Hottel
,
H. C.
, and
Williams
,
G. C.
,
1967
, “
The Nozzle-Fluid Concentration Field of the Round, Turbulent, Free Jet
,”
J. Fluid Mech.
,
30
(
2
), pp.
285
303
.
24.
Dahm
,
W. A.
,
1985
, “
Experiments on Entrainment, Mixing and Chemical Reaction in Turbulent Jets at Large Schmidt Number
,”
Ph.D. thesis
, California Institute of Technology, Pasadena, CA.
25.
Corrsin
,
S.
, and
Uberoi
,
M. S.
,
1950
, “
Further Experiments on the Flow and Heat Transfer in a Heated Turbulent Air Jet
,” National Advisory Committee for Aeronautics,
Report No. 998
.
26.
Papanicolaou
,
P. N.
, and
List
,
E. J.
,
1988
, “
Investigations of Round Vertical Turbulent Buoyant Jets
,”
J. Fluid Mech.
,
195
, pp.
341
391
.
27.
Fischer
,
H. B.
,
List
,
E. J.
,
Koh
,
R. C. Y.
,
Imberger
,
J.
, and
Brooks
,
N. H.
,
1979
,
Mixing in Inland and Coastal Waters
,
Academic Press
,
San Diego, CA
, pp.
315
389
.
28.
Andreani
,
M.
,
Badillo
,
A.
, and
Kapulla
,
R.
,
2014
, “
Synthesis of the OECD/NEA-PSI CFD Benchmark Exercise
,”
CFD4NRS-5 Conference
, Zurich, Switzerland, Sept. 9–11.
You do not currently have access to this content.