This paper presents the results of experimental investigations into two-phase mass transport in a coarse packed bed representing the Canada Deuterium Uranium (CANDU) end shield. This work contributes to understanding of phenomena impacting in-vessel retention (IVR) during postulated severe accidents in CANDU reactors. The air barbotage technique was used to represent boiling at the calandria tubesheet surface facing the inner cavity of the end shield. Qualitative observations of the near-wall two-phase region were made during air injection. In addition, flow visualization was carried out through the addition of dye to the water. Air flow rate, shielding ball diameter, and cavity dimensions were varied within relevant ranges; and the impact of these parameters on the near-wall region was identified. A brief review of the relevant knowledge base is presented, allowing demonstration of the applicability of the test parameters. The observed phenomena are compared to published results involving similar geometries with capillary porous media.

References

References
1.
Meneley
,
D. A.
, and
Ruan
,
Y. Q.
,
1998
, “
Introduction to CANDU 6—Part 1: Comparison of PHWR and PWR
,” Xi'an Jiaotong University, Sept. 22–25.
2.
Meneley
,
D. A.
,
Blahnik
,
C.
,
Rogers
,
J. T.
,
Snell
,
V. G.
, and
Nijhawan
,
S.
,
1996
, “
Coolability of Severely Degraded CANDU Cores
,”
AECL Report Number No. AECL-11110
.
3.
Luxat
,
J. C.
,
2009
, “
Thermal-Hydraulic Aspects of Progression to Severe Accidents in CANDU Reactors
,”
Nucl. Technol.
,
167
(
1
), pp.
187
210
.
4.
Nitheanandan
,
T.
, and
Brown
,
M. J.
,
2013
, “
Backup and Ultimate Heat Sinks in CANDU Reactors for Prolonged SBO Accidents
,”
Nucl. Eng. Technol.
,
45
(
5
), pp.
589
596
.
5.
Theofanous
,
T. G.
,
Syri
,
S.
,
Salmassi
,
T.
,
Kymalainen
,
O.
, and
Tuomisto
,
H.
,
1994
, “
Critical Heat Flux Through Curved, Downward Facing, Thick Walls
,”
Nucl. Eng. Des.
,
151
(
1
), pp.
247
258
.
6.
Theofanous
,
T. G.
, and
Syri
,
S.
,
1997
, “
The Coolability Limits of a Lower Reactor Pressure Vessel Lower Head
,”
Nucl. Eng. Des.
,
169
(1–3), pp.
59
76
.
7.
Angelini
,
S.
,
Tu
,
J. P.
,
Buyevich
,
Y. A.
, and
Theofanous
,
T. G.
,
2000
, “
The Mechanism and Prediction of Critical Heat Flux in Inverted Geometries
,”
Nucl. Eng. Des.
,
200
(1–2), pp.
83
94
.
8.
Yang
,
J.
,
Cheung
,
F. B.
,
Rempe
,
J. L.
,
Suh
,
K. Y.
, and
Kim
,
S. B.
,
2005
, “
Correlations of Nucleate Boiling Heat Transfer and Critical Heat Flux for External Reactor Vessel Cooling
,”
ASME
Paper No. HT2005-72334.
9.
Yang
,
J.
,
Dizon
,
M. B.
,
Cheung
,
F. B.
,
Rempe
,
J. L.
,
Suh
,
K. Y.
, and
Kim
,
S. B.
,
2006
, “
CHF Enhancement by Vessel Coating for External Reactor Vessel Cooling
,”
Nucl. Eng. Des.
,
236
(
10
), pp.
1089
1098
.
10.
Theofanous
,
T. G.
,
Liu
,
C.
,
Additon
,
S.
,
Angelini
,
S.
,
Kymalainen
,
O.
, and
Salmassi
,
T.
,
1997
, “
In Vessel Coolability and Retention of a Core Melt
,”
Nucl. Eng. Des.
,
169
(1–3), pp.
1
48
.
11.
Kymalainen
,
O.
,
Tuomisto
,
H.
, and
Theofanous
,
T. G.
,
1997
, “
In-Vessel Retention of Corium at the Loviisa Plant
,”
Nucl. Eng. Des.
,
169
(1–3), pp.
109
130
.
12.
Nob
,
S. W.
, and
Suh
,
K. Y.
,
2013
, “
Critical Heat Flux for APR 1400 Lower Head Vessel During a Severe Accident
,”
Nucl. Eng. Des.
,
258
, pp.
116
129
.
13.
Chu
,
T. Y.
,
Bentz
,
J. H.
, and
Simpson
,
R. B.
,
1995
, “
Observation of the Boiling Process From a Large Downward Facing Torispherical Surface
,”
National Heat Transfer Conference
, American Nuclear Society, Portland, OR, Aug. 5–9.
14.
Chu
,
T. Y.
,
Bainbridge
,
B. L.
,
Simpson
,
R. B.
, and
Bentz
,
J. H.
,
1997
, “
Ex-Vessel Boiling Experiments: Laboratory and Reactor-Scale Testing of the Flooded Cavity Concept for In-Vessel Core Retention
,”
Nucl. Eng. Des.
,
169
(1–3), pp.
77
88
.
15.
Rouge
,
S.
,
1997
, “
SULTAN Test Facility for Large-Scale Vessel Coolability in Natural Convection at Low Pressure
,”
Nucl. Eng. Des.
,
169
(1–3), pp.
185
195
.
16.
Jeong
,
Y. H.
, and
Chang
,
S. H.
,
2005
, “
Critical Heat Flux Experiments on the Reactor Vessel Wall Using 2-D Slice Test Section
,”
Nucl. Technol.
,
152
(
2
), pp.
162
169
.
17.
Spencer
,
J.
,
2016
, “
Measurement of Critical Heat Flux in a CANDU End Shield Consisting of a Vertical Surface Abutting a Packed Bed of Steel Shielding Balls
,”
AECL Nucl. Rev.
(in press).
18.
Zuber
,
N.
,
1991
, “
Hierarchical, Two-Tiered Scaling Analysis, An Integrated Structure and Scaling Methodology for Severe Accident Technical Issue Resolution: Appendix D
,” U.S. Nuclear Regulatory Commission, Washington, DC, Report No. NUREG/CR-5809.
19.
Luxat
,
D. L.
, and
Luxat
,
J. C.
,
2007
, “
Calandria Vessel Integrity Under Severe Accident Loads
,” Transactions of SMiRT, Paper No. J07/2.
20.
Parmentier
,
E. M.
,
1979
, “
Two-Phase Natural Convection Adjacent to a Vertical Heated Surface in a Permeable Medium
,”
Int. J. Heat Mass Transfer
,
22
(
6
), pp.
849
855
.
21.
Cheng
,
P.
, and
Verma
,
A. K.
,
1981
, “
The Effect of Subcooled Liquid on Film Boiling About a Vertical Heated Surface in a Porous Medium
,”
Int. J. Heat Mass Transfer
,
24
(
7
), pp.
1151
1160
.
22.
Wang
,
C. Y.
, and
Beckermann
,
C.
,
1995
, “
Boundary-Layer Analysis of Buoyancy-Driven Two-Phase Flow in Capillary Porous Media
,”
ASME J. Heat Transfer
,
117
(
4
), pp.
1082
1087
.
23.
Kutateladze
,
S. S.
, and
Moskvicheva
,
V. N.
,
1960
, “
Hydrodynamics of a Two-Component Layer as Related to the Theory of Crises in the Process of Boiling
,”
Sov. Tech. Phys.
,
4
(
12
), p. 7.
24.
Narayanaswamy
,
S.
,
1973
, “
Bubble Dynamics in Barbotage and Boiling
,”
M.Sc. thesis
, University of Manitoba, Winnipeg, MB.
25.
Chan
,
P. Y. J.
,
1985
, “
Bubble Dynamics in Combined Constant-Flow and Constant-Pressure Barbotage
,”
M.Sc. thesis
, University of Manitoba, Winnipeg, MB.
26.
Howard
,
A. H.
, and
Mudawar
,
I.
,
1999
, “
Orientation Effects on Pool Boiling Critical Heat Flux (CHF) and Modeling of CHF for Near-Vertical Surfaces
,”
Int. J. Heat Mass Transfer
,
42
(
9
), pp.
1665
1688
.
You do not currently have access to this content.