The paper overviews the analytical studies performed at Politehnica University of Bucharest on the analysis of late phase severe accident phenomena in a Canada Deuterium Uranium (CANDU) plant. The calculations start from a dry debris bed at the bottom of calandria vessel. Both SCDAPSIM/RELAP code and ansys-fluent computational fluid dynamics (CFD) code are used. Parametric studies are performed in order to quantify the effect of several identified sources of uncertainty on calandria vessel failure: metallic fraction of zirconium inside the debris, containment pressure, timing of water depletion inside calandria vessel, steam circulation in calandria vessel above debris bed, debris temperature at moment of water depletion inside calandria vessel, calandria vault nodalization, and the gap heat transfer coefficient.

References

References
1.
IAEA
,
2008
, “
Analysis of Severe Accidents in Pressurized Heavy Water Reactors
,” International Atomic Energy Agency, Vienna, Austria, Report No. IAEA-TECDOC-1594.
2.
Luxat
,
D. L.
, and
Luxat
,
J. C.
,
2007
, “
Calandria Vessel Integrity Under Severe Accident Loads
,” SMiRT 19, Toronto, Canada, Aug. 12–17, Paper No. J07/2.
3.
Park
,
S. Y.
,
Jin
,
Y. H.
, and
Song
,
Y. M.
,
2006
, “
An Investigation of an In-Vessel Corium Retention Strategy for the Wolsong PHWR Plants
,”
Nucl. Technol.
,
158
(
1
), pp.
109
115
.
4.
Mladin
,
M.
,
Dupleac
,
D.
,
Prisecaru
,
I.
, and
Mladin
,
D.
,
2010
, “
Adapting and Applying SCDAP/RELAP5 to CANDU In-Vessel Retention Studies
,”
Ann. Nucl. Energy
,
37
(
6
), pp.
845
852
.
5.
Dupleac
,
D.
,
Prisecaru
,
I.
,
Mladin
,
M.
, and
Negut
,
Gh
.,
2008
, “
SCDAP/RELAP5 Investigation on Coolability of Severely Degraded CANDU 6 Core—Preliminary Results
,”
International Conference on Advances in Nuclear Power Plants
,
ICAPP 2008
, Anaheim, CA, Vol.
2
, pp.
1095
1101
.
6.
Dupleac
,
D.
,
Mladin
,
M.
,
Prisecaru
,
I.
, and
Negut
,
Gh.
,
2010
, “
SCDAPSIM/RELAP5 Investigation on In-Vessel Corium Retention for CANDU 6 Plant
,”
International Conference on Advances in Nuclear Power Plants
,
ICAPP 2010
, San Diego, CA, June 13–17, Vol.
2
, pp.
1105
1111
.
7.
The SCDAP/RELAP5 Development Team
,
1996
, “
SCDAP/RELAP5/MOD3.2 Code Manual, Volume II: Damage Progression Model Theory
,” United States Nuclear Regulatory Commission, Washington, DC, Report No. NUREG/CR-6150 INEL-96/0422, Revision 1.
8.
NRC
,
1993
, “
Light Water Reactor Lower Head Failure Analysis
,” United States Nuclear Regulatory Commission, Washington, DC,
Report No. NUREG/CR-5642 EGG-2618
.
9.
Okano
,
Y.
,
Kohriyama
,
T.
,
Yoshida
,
Y.
, and
Murase
,
M.
,
2003
, “
Modeling of Debris Cooling With Annular Gap in the Lower RPV and Verification Based on ALPHA Experiments
,”
Nucl. Eng. Des.
,
223
, pp.
145
158
.
10.
Fujita
,
Y.
,
Ohta
,
H.
,
Uchida
,
S.
, and
Nishikawa
,
K.
,
1988
, “
Nucleate Boiling Heat Transfer and Critical Heat Flux in Narrow Space Between Rectangular Surfaces
,”
Int. J. Heat Mass Transfer
,
31
(
2
), pp.
229
239
.
11.
Prasad
,
S. V.
,
Nayak
,
A. K.
,
Kulkarni
,
P. P.
,
Vijayan
,
P. K.
, and
Vaze
,
K. K.
,
2015
, “
Study on Heat Removal Capability of Calandria Vault Water From Molten Corium in Calandria Vessel During Severe Accident of a PHWR
,”
Nucl. Eng. Des.
,
284
, pp.
130
142
.
12.
Dupleac
,
D.
,
Mladin
,
M.
, and
Prisecaru
,
I.
,
2009
, “
Generic CANDU 6 Plant Severe Accident Analysis Employing SCAPSIM/RELAP5 Code
,”
Nucl. Eng. Des.
,
239
, pp.
2093
2103
.
13.
IAEA
,
2013
, “
Benchmarking Severe Accident Computer Codes for Heavy Water Reactor Applications
,” International Atomic Energy Agency, Vienna, Austria, IAEA TECDOC Series, TECDOC No. 1727.
14.
Dupleac
,
D.
,
Mladin
,
M.
, and
Prisecaru
,
I.
,
2011
, “
Sensitivity Studies on Uncertainty Parameters and Code Modeling of Calandria Vessel Integrity During Late Phase CANDU 6 Severe Accident
,”
Performance and Flexibility: The Power of Innovation
,
ICAPP 2011
, Nice, France, May 2–5, pp.
1322
1327
.
15.
Cheung
,
F. B.
,
Haddad
,
K. H.
, and
Liu
,
Y. C.
,
1999
, “
Boundary-Layer-Boiling and Critical-Heat Flux Phenomena on a Downward-Facing Hemispherical Surface
,”
Nucl. Technol.
,
126
(
3
), pp.
243
264
.
16.
Theofanous
,
T. G.
,
Syri
,
S.
,
Salmassi
,
T.
,
Kymäläinen
,
O.
, and
Tuomisto
,
H.
,
1994
, “
Critical Heat Flux Through Curved, Downward Facing, Thick Walls
,”
Nucl. Eng. Des.
,
151
, pp.
247
258
.
17.
Dupleac
,
D.
,
2016
, “
Analysis of CANDU6 Reactor Station Blackout Event Concomitant With Moderator Drainage
,”
U.P.B. Sci. Bull.
,
78
(
2
), pp.
285
292
.
18.
Nicolici
,
S.
,
Dupleac
,
D.
, and
Prisecaru
,
I.
,
2012
, “
CFD Modeling of Debris Melting Phenomena During Late Phase Candu6 Severe Accident
,”
International Congress on Advances in Nuclear Power Plants 2012
,
ICAPP 2012
, Chicago, IL, June 24–28, Vol.
2
, pp.
1369
1376
.
19.
Nicolici
,
S.
,
Dupleac
,
D.
, and
Prisecaru
,
I.
,
2013
, “
Numerical Analysis of Debris Melting Phenomena During Late Phase CANDU 6 Severe Accident
,”
Nucl. Eng. Des.
,
254
, pp.
272
279
.
You do not currently have access to this content.