The technology of pressurized heavy water reactors (PHWRs) which was developed with prime objectives of using natural uranium fuel, implementing on power fuelling, utilizing mined uranium most effectively, and achieving excellent neutron economy has demonstrated impressive performance in terms of high capacity factors and an impeccable safety record. The safety features and several technology advancements evolved over the years in which Indian contributions that are considerable are briefly discussed in the first part of the paper. Unique features of PHWR such as flexibility of fuel management, distribution of pressure boundaries in multiple pressure tubes (PTs), and a large inventory of coolant-moderator heat sink in close proximity of the core provide inherent safety and fuelling options to these reactors. PHWRs, in India have demonstrated to have the advantage of lower capital cost per megawatt even in small size reactors. Low burn up associated with natural uranium fuel, higher level of tritium in the heavy water coolant, and a slightly positive coolant void coefficient in present generation PHWRs have all been addressed in the design of advanced heavy water reactor (AHWR). The merit of adopting closed fuel cycle with partitioning of minor actinides in reducing the burden of radio-toxicity of nuclear waste and of deploying light water reactors (LWRs) in tandem with PHWRs in the evolving nuclear fuel cycle in India are also discussed.

References

References
1.
Bhabha
,
H. J.
, and
Prasad
,
N. B.
,
1958
, “
A Study of the Contribution of Atomic Energy to a Power Programme in India
,”
2nd UN International Conference on ‘Peaceful Uses of Atomic Energy,’
Geneva, Switzerland, Sept. 1–13, pp. 89–101.
2.
Ramanna
,
R.
,
1987
, “
Indian Nuclear Programme: Achievements and Prospects
,”
J. Korean Nucl. Soc.
,
19
(
8
), pp.
213
219
.
3.
Rastogi
,
B. P.
,
1989
, “
Reactor Physics Computer Code Development for Neutronic Design, Fuel Management, Reactor Operation, and Safety Analysis of PHWRs
,”
BARC Report No. BARC-1442
.
4.
Krishnani
,
P. D.
, and
Srinivasan
,
K. R.
,
1981
, “
A Method for Solving Integral Transport Equation for PHWR Cluster Geometry
,”
Nucl. Sci. Eng.
,
78
(
1
), pp.
97
103
.
5.
Jain
,
V. K.
, and
Gupta
,
H. P.
,
1986
, “
Analysis of Super Delayed Critical Transients in Thermal Reactors Using 2 and 3-D Adiabatic and IQS Methods
,”
Ann. Nucl. Energy
,
13
(
3
), pp.
115
125
.
6.
Fernando
,
M. P. S.
,
2012
, “
Development of 3-D Space Time Kinetics Model for Coupled Neutron Kinetics and Thermal Hydraulics
,”
IAEA
Workshop on Advanced Code Suite for Design, Safety Analysis, and Operation of Heavy Water Reactors
, Ottawa, Canada, Oct. 2–5.
7.
Askew
,
J. R.
,
Fayers
,
F. J.
, and
Kemshell
,
P. B.
,
1966
, “
A General Description of the Lattice Code WIMS
,”
J. Br. Nucl. Energy Soc.
,
5
(
4
), pp.
564
585
.
8.
Nuclear Data Services,
2014
, “
WIMS Nuclear Data Libraries
,” IAEA, Vienna, Austria, accessed Dec. 3, 2016, http://www-nds.iaea.org/wimsd
9.
Srinivasan
,
K. R.
,
1996
, “
Reactor Physics Methods for Design and Analysis of Heavy Water Moderated Reactors
,”
National Conference on Radiation Shielding and Protection, IGCAR
, Kalpakkam, India, June 26–28, pp.
93
98
.
10.
Banerjee
,
S.
, and
Mukhopadhaya
,
P.
,
2007
, “
Phase Transformations: Examples From Titanium and Zirconium Alloys
,”
Pergamon Materials Series
,
Elsevier, Amsterdam
,
The Netherlands
.
11.
Singh
,
R. N.
,
Kishore
,
R.
,
Sinha
,
T. K.
, and
Banerjee
,
S.
,
2000
, “
Tensile Properties of Zr-2.5 Nb Pressure Tube Alloy Between 25 and 8000 C
,”
BARC Report No. BARC/2000/E/029
.
12.
De
,
P. K.
,
John
,
J. T.
,
Raman
,
V. V.
, and
Banerjee
,
S.
,
1993
, “
Stress Distribution and Hydride Orientation in Zr 2.5 Nb 0.5 Cu Garter Spring Under Complex Loading
,”
J. Nucl. Mater.
,
203
(
2
), pp.
94
111
.
13.
Bajaj
,
S. S.
, and
Gore
,
A. R.
,
2006
, “
The Indian PHWR
,”
Nucl. Eng. Des.
,
236
(
7–8
), pp.
701
722
.
14.
Soni
,
K. L.
,
Arpana
,
Mohan
,
L. R.
,
Nema
,
M. K.
, and
Mahajan
,
S. C.
,
1997
, “
Liquid Poison Injection System (LPIS) for Kaiga 1&2, & RAPP 3&4, 220 MWel PHWRs
,”
Workshop on Reactor Shutdown System
, IGCAR, Kalpakkam, India, Mar. 4–6, pp.
IV.3.1
IV.3.10
.
15.
Bhardwaj
,
S. A.
,
2006
, “
The Future 700 MWe Pressurized Heavy Water Reactors
,”
Nucl. Eng. Des.
,
236
(
7–8
), pp.
861
871
.
16.
Chatterjee
,
S. K.
,
Srinivasan
,
G. R.
,
Das
,
M.
,
Prakash
,
P.
, and
Mulgund
,
S.
,
1994
, “
Containment Design of Indian PHWRs-Evolution and Future Trends
,”
3rd International Conference on Containment Design and Operation
, Toronto, ON, Canada, Vol.
1
, Oct. 19–21.
17.
Muktibodh
,
U. C.
,
2011
, “
Advanced Nuclear Reactor Technology for Near-Term Deployment
,”
International Workshop
, Vienna, Austria, July 4–8.
18.
Kakodkar
,
A.
,
Kushwaha
,
H. S.
, and
Dutta
,
B. K.
,
1989
, “
Structural Evolution of Containment
,”
Nucl. Eng. Des.
,
117
(
1
), pp.
33
44
.
19.
Singh
,
T.
,
Singh
,
R. K.
, and
Ghosh
,
A. K.
,
2008
, “
Axisymmetric Global Structural Analysis of Barc Prestressed Concrete Containment Model for Beyond Design Pressure
,”
BARC Report No. BARC-2008/E/020
.
20.
Prasad
,
Y. S. R.
,
1996
, “
Indian Nuclear Power Programme: Challenges in PHWR Technology
,”
IAEA Technical Committee Meeting on Advances in Heavy Water Reactor Technology
, Mumbai, India, Jan. 29–Feb. 1, pp.
29
46
.
21.
Puri
,
R. K.
, and
Singh
,
M.
,
2009
, “
BARCIS-BARC Channel Inspection System
,”
International Conference on Peaceful Uses of Atomic Energy
, New Delhi, India, pp.
647
648
.
22.
Van Hong
,
L.
, and
Chatterjee
,
B.
,
2002
, “
Large LOCA Analysis of Indian Pressurised Heavy Water Reactor-220 MWel
,”
Nucl. Sci. Tech.
,
1
(
1
), pp.
12
17
.
23.
Gupta
,
H. P.
, and
Jain
,
V. K.
,
1993
, “
Development of Computer Codes for the Analysis of Reactivity Induced Transients in PHWRs
,” I Technical Coordination Meeting (TCM) on Advances in Heavy Water Reactors, Toronto, ON, Canada, June 7–10, pp.
187
189
.
24.
Lawande
,
Q. V.
,
Yadav
,
R. D. S.
, and
Gupta
,
H. P.
,
2002
, “
Transient Analysis in a 500 MWel PHWR
,”
National Conference on Nuclear Reactor Safety, Mumbai
, India, Nov. 25–27, p.
305
.
25.
A-6 Interim report, “
A-6 Report on Interim Report on Safety Evaluation of 700 MWel Indian PHWRs KAPP3&4 and RAPP7&8 Post Fukushima Event
,”, Nuclear Power Corporation of India Limited (NPCIL), India, accessed Dec. 3, 2016, https:\\www.npcil.nic.in /pdf/A6.pdf
26.
Nuclear Power Corporation
,
2015
, “
Plants Under Operation, All Plant
,” Nuclear Power Corporation of India Limited, India, accessed Dec. 3, 2016, https:\\www.npcil.nic.in
27.
Soni
,
R.
,
Prasad
,
P.
,
Vijay Kumar
,
S.
,
Chhatre
,
A.
, and
Dwivedi
,
K. P.
,
2005
, “
Fuel Technology Evolution for Indian PHWRs
,”
International Conference on WWER Fuel Performance Modelling, and Experimental Support
, Albena, Bulgaria, Sept. 19–23.
28.
Bhardwaj
,
S. A.
,
Kumar
,
A. N.
,
Prasad
,
P. N.
, and
Ravi
,
M.
,
2003
, “
Fuel Performance Design and Development
,” 8th International Conference on CANDU Fuel, Canadian Nuclear Society, Toronto, ON, Canada, Sept. 21–24, pp.
98
108
.
29.
Bhardwaj
,
S. A.
, and
Das
,
M.
,
1986
, “
Fuel Design Evolution in Indian PHWRs
,”
International Symposium on Improvements in Water Reactor Fuel Technology and Utilisation
, Stockholm, Sweden, Sept. 15–19, IAEA, Austria, pp.
129
136
.
30.
Prasad
,
P. N.
,
Tripathi
,
R. M.
,
Kumar
,
A. N.
,
Ray
,
S.
, and
Dwivedi
,
K. P.
,
2010
, “
Fuel Element Designs for Achieving High Burn-Ups in 220 MW(e) Indian PHWRs
,”
Report No. IAEA-TECDOC-1654,
pp.
75
81
.
31.
Balakrishnan
,
K.
,
Majumdar
,
S.
,
Ramanujam
,
A.
, and
Kakodkar
,
A.
,
2002
, “
The Indian Perspective on Thorium Fuel Cycles
,”
Report No. IAEA-TECDOC-1319
, pp.
257
265
.
32.
Gupta
,
H. P.
,
Menon
,
S. V. G.
, and
Banerjee
,
S.
,
2008
, “
Advanced Fuel Cycles for Use in PHWRs
,”
J. Nucl. Mater.
,
383
(
1–2
), pp.
54
62
.
33.
Boczar
,
P. G.
,
Chan
,
P. S. W.
,
Dyck
,
G. R.
,
Ellis
,
R. J.
,
Jones
,
R. T.
, and
Sullivan
,
J. D.
,
2002
, “
Thorium Fuel-Cycle Studies for CANDU Reactors
,”
Report No. IAEA-TECDOC-1319,
pp.
25
41
.
34.
Banerjee
,
S.
,
Gupta
,
H. P.
, and
Bhardwaj
,
S. A.
,
2016
, “
Nuclear Power From Thorium: Different Options
,”
Curr. Sci.
,
111
(
10
), pp.
1607
1623
.
35.
Balakrishnan
,
K.
,
1994
, “
Optimisation of Initial Fuel Loading of the Indian PHWR With Thorium Bundles for Achieving Full Power
,”
Ann. Nucl. Energy
,
21
(
1
), pp.
1
9
.
36.
Balakrishnan
,
K.
, and
Kakodkar
,
A.
,
1992
, “
Preliminary Physics Design of Advanced Heavy Water Reactor (AHWR)
,” Report No. IAEA-TECDOC-638, pp.
70
77
.
37.
Sinha
,
R. K.
, and
Kakodkar
,
A.
,
2006
, “
Design and Development of AHWR-The Indian Thorium Fuelled Innovative Nuclear Reactor
,”
Nucl. Eng. Des.
,
236
(
1
), pp.
683
700
.
38.
Kannan
,
U.
, and
Krishnani
,
P. D.
,
2013
, “
Energy From Thorium—An Indian Perspective
,”
Sadhana
,
38
(
5
), pp.
817
837
.
39.
Mukesh
,
Kumar
,
Nayak
,
A. K.
,
Jain
,
V.
,
Vijayan
,
P. K.
, and
Vaze
,
K. K.
,
2013
, “
Managing a Prolonged Station Blackout Condition in AHWR by Passive Means
,”
Nucl. Eng. Tech.
,
45
(
5
), pp.
605
612
.
40.
Balu
,
K.
,
Purushotham
,
D. S. C.
, and
Kakodkar
,
A.
,
1998
, “
Closing Fuel Cycle–A Superior Option for India
,”
Fuel Cycle Options for Light Water Reactors and Heavy Water Reactors
, Victoria, Canada, Apr. 28–May 1, pp.
25
34
.
41.
Wattal
,
P. K.
,
2013
, “
Recycling Challenges of Thorium-Based Fuel
,”
International Thorium Energy Conference
, (
IThEC-13
), Cern, Geneva, Switzerland, Oct. 27–31, pp.
171
175
.
42.
Balu
,
K.
, and
Ramanujam
,
A.
,
1999
, “
Reprocessing and Recycling of U/Pu–A Safer Option for Optimum Utilisation of Resources in the Nuclear Fuel Cycle
,”
Radiation Protection in Nuclear Fuel Cycle: Control of Occupational and Public Exposures
,
R. K.
Pushparaja
,
P. R.
Sangurdekar
, and
T.
Kurien
, eds.,
Indian Association of Radiation Protection
,
Kakrapar, India
, pp.
57
62
.
You do not currently have access to this content.