As a nongreenhouse gas-emitting source, the benefits of nuclear as a main power-generation alternative are yet to be fully explored; part of the reason is due to the significant implementation costs. However, with cycle efficiencies of 45–50% in current studies, it can be argued that the long-term benefits outweigh the initial costs, if developed under the Generation-IV (Gen-IV) framework. The main objective of this study is to analyze the effects of pressure and temperature ratios (TRs) including sensitivity analyses of component efficiencies, ambient temperature, component losses and pressure losses on cycle efficiency and specific work. The results obtained indicate that pressure losses and recuperator effectiveness have the greatest impact on cycle efficiency and specific work. The analyses intend to aid development of the simple cycle recuperated (SCR) and intercooled cycle recuperated (ICR) cycles, applicable to gas-cooled fast reactors (GFRs) and very-high-temperature reactors (VHTRs), in which helium is the coolant.

References

References
1.
Locatelli
,
G.
,
Mancini
,
M.
, and
Todeschini
,
N.
,
2013
, “
Generation IV Nuclear Reactors: Current Status and Future Prospects
,”
Energy Policy
,
61
, pp. 
1503
1520
. 0301-421510.1016/j.enpol.2013.06.101
2.
Nuclear Research Advisory Committee and Generation IV International Forum
,
2002
, “
A Technology Roadmap for Generation IV Nuclear Energy Systems
,” ,
US DOE
,
Washington, DC
3.
Carre
,
F.
,
Yvon
,
P.
,
Anzieu
,
P.
,
Chauvin
,
N.
, and
Malo
,
J.-Y.
,
2010
, “
Update of the French R&D Strategy on Gas-Cooled Reactors
,”
Nucl. Eng. Des.
,
240
(
10
), pp. 
2401
2408
. 0029-549310.1016/j.nucengdes.2010.02.042
4.
Giacobbe
,
F. W.
,
1998
, “
Heat Transfer Capability of Selected Binary Gaseous Mixtures Relative to Helium and Hydrogen
,”
Appl. Therm. Eng.
,
18
(
3–4
), pp. 
199
206
. 1359-431110.1016/S1359-4311(97)00019-7
5.
GIF
,
2014
, “
Technology Roadmap Update for Generation IV Nuclear Energy Systems
,”
OECD Nuclear Energy Agency
,
Boulogne-Billancourt, France
.
6.
Pradeepkumar
,
K. N.
,
Tourlidakis
,
A.
, and
Pilidis
,
P.
,
2001
, “
Analysis of 115 MW, 3-Shaft, Helium Brayton Cycle Using Nuclear Heat Source
,”
Proceedings of ASME Turbo Expo 2001 Land, Sea and Air
,
Jun. 4–7, 2001
,
International Gas Turbine Institute
,
New Orleans, Louisiana
.
7.
Pradeepkumar
,
K. N.
,
Tourlidakis
,
A.
, and
Pilidis
,
P.
,
2001
, “
Design and Performance review of PBMR Closed Cycle Gas Turbine Plant in South Africa
,”
International Joint Power Generation Conference
,
Jun. 4–7, 2001
,
ASME
,
New Orleans, Louisiana
.
8.
Pradeepkumar
,
K. N.
,
Tourlidakis
,
A.
, and
Pilidis
,
P.
,
2001
, “
Performance Review: PBMR Closed Cycle Gas Turbine Power Plant
,”
Proceedings of Technical Committee Meeting on HTGR—Power Conversion Systems
,
Nov. 14–16, 2000
,
International Atomic Energy Agency
,
Paulo Alto
, pp. 
99
112
.
9.
Kulhanek
,
M.
, and
Dostal
,
V.
,
2007
,
Supercritical Carbon Dioxide Cycles: Thermodynamic Analysis and Comparison
,
Czech Technical University Prague
,
Prague, Czech Republic
.
10.
Baxi
,
C. B.
,
Shenoy
,
A.
,
Kostin
,
V. I.
,
Kodochigov
,
N. G.
,
Vasyaev
,
A. V.
,
Belov
,
S. E.
, and
Golovko
,
V. F.
,
2008
, “
Evaluation of Alternate Power Conversion Unit Designs for the GT-MHR
,”
Nucl. Eng. Des.
,
238
(
11
), pp. 
2995
3001
. 0029-549310.1016/j.nucengdes.2007.12.021
11.
Sato
,
H.
,
Yan
,
X. L.
,
Tachibana
,
Y.
, and
Kunitomi
,
K.
,
2014
, “
GTHTR300—A Nuclear Power Plant Design With 50% Generating Efficiency
,”
Nucl. Eng. Des.
,
275
, pp. 
190
196
. 0029-549310.1016/j.nucengdes.2014.05.004
12.
Pitts
,
D. R.
, and
Sissom
,
L. E.
,
1997
,
Theory and Problems of Heat Transfer
,
2nd ed.
,
McGraw-Hill
,
New York
.
13.
Navarro
,
H. A.
, and
Cabezas-Gomez
,
L. C.
,
2007
, “
Effectiveness-NTU Computation With a Mathematical Model for Cross-Flow Heat Exchangers
,”
Brazilian J. Chem. Eng.
,
24
(
4
), pp. 
509
521
.10.1590/S0104-66322007000400005
You do not currently have access to this content.