In this study, transient analysis code of SCWRs (TACOS), with the ability of simulating transients or accidents under both supercritical water (SCW) conditions and subcritical water conditions, has been developed with fortran 90 language, and simulation has been performed to the European SCWR fuel qualification test (FQT) system. The semi-implicit finite difference technique was adopted for the solution of coolant dynamic behavior in the loop. Furthermore, an illustration of numerical solution for the heat structure model and other models was presented. The code TACOS is then applied to simulate the Edward-O’Brian blow-down experiment to evaluate its capacity in simulating the fast blow-down progress. Therefore, the design basis accidents (DBAs) with the trans-critical transient were investigated for the SCWR-FQT system. The results by TACOS indicate that the SCWR-FQT with the existing safety system can be cooled effectively.

References

1.
Zhu
,
D.
,
Zhao
,
H.
,
Tian
,
W.
,
Su
,
Y.
,
Chaudri
,
K. S.
,
Su
,
G.
, and
Qiu
,
S.
,
2012
, “
Development of TACOS Code for Loss of Flow Accident Analysis of SCWR With Mixed Spectrum Core
,”
Prog. Nucl. Energy
,
54
(
1
), pp. 
150
161
. 0149-197010.1016/j.pnucene.2011.07.002
2.
Cheng
,
X.
,
Liu
,
X. J.
, and
Yang
,
Y. H.
,
2008
, “
A Mixed Core for Supercritical Water-Cooled Reactors
,”
Nucl. Eng. Technol.
,
40
(
2
), pp. 
117
126
.10.5516/NET.2008.40.2.117
3.
Chen
,
Y. Z.
,
Yang
,
C. S.
,
Zhao
,
M. F.
,
Du
,
K. W.
, and
Zhang
,
S. M.
,
2010
, “
Experimental Studies on Critical Flow and Heat Transfer of Water for Near-Critical and Supercritical Pressures
,”
Technical Meeting on Heat Transfer, Thermal-Hydraulics and System Design for Supercritical Water-Cooled Reactors
, Book of Abstracts,
International Atomic Energy Agency
,
Vienna (Austria)
, p.
18
.
4.
Bishop
,
A. A.
,
Sandberg
,
R. O.
, and
Tong
,
L. S.
,
1964
, “
Forced-convection Heat Transfer to Water at Near-critical Temperatures and Supercritical Pressure
,”
Westinghouse Electric Corporation
,
Pittsburgh, PA
, Atomic Power Division.
5.
Kirillov
,
P. L.
,
Pomet’ko
,
R. S.
,
Smirnov
,
A.
,
Grabezhnaia
,
V.
,
Pioro
,
I.
,
Duffey
,
R.
, and
Khartabil
,
H.
,
2005
, “
Experimental Study on Heat Transfer to Supercritical Water Flowing in Vertical Tubes
,”
Proceedings of the International Conference GLOBAL-2005, Nuclear Energy Systems for Future Generation and Global Sustainability
,
Oct. 9–13
,
Tsukuba, Japan
, Paper No. 518,
8
pp.
6.
Edwards
,
A. R.
, and
O’Brien
,
T. P.
,
1970
, “
Studies of Phenomena Connected With the Depressurization of Water Reactors
,”
J. Br. Nucl. Energy Soc.
,
9
(
2
), pp. 
125
135
. 0007-1587
7.
Wu
,
P.
,
Gou
,
J. L.
,
Shan
,
J. Q.
,
Jiang
,
Y.
,
Yang
,
J.
, and
Zhang
,
B.
,
2013
, “
Safety Analysis Code SCTRAN Development for SCWR and its Application to CGNPC SCWR
,”
Ann. Nucl. Energy
,
56
, pp. 
122
135
. 0306-454910.1016/j.anucene.2013.01.028
8.
Schneider
,
R.
,
Schlagenhaufer
,
M.
, and
Schulenberg
,
T.
,
2010
, “
Conceptual Design of the Safety System for a SCWR Fuel Qualification Test
,”
Proceedings of the 8th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Operation and Safety
,
Oct. 10–14
,
Shanghai, China
.
9.
Raqué
,
M.
,
Wank
,
A.
,
Schulenberg
,
T.
, and
Hajek
,
P.
,
2010
, “
Thermal Analysis of a Test Fuel Element for a Reactor With Supercritical Water
,”
NUTHOS-8
,
Oct. 10–14
,
Shanghai, China
.
10.
Zhou
,
C.
,
Yang
,
Y.
, and
Cheng
,
X.
,
2012
, “
Feasibility Analysis of the Modified ATHLET Code for Supercritical Water Cooled Systems
,”
Nucl. Eng. Des.
,
250
(
1
), pp. 
600
612
. 0029-549310.1016/j.nucengdes.2012.06.021
You do not currently have access to this content.