The direct-contact condensation (DCC) is a significant phenomenon in a nuclear reactor and its balance facilities, together with some chemical engineering systems. DCC occurs when the vapor is ejected from the nozzle, contacts with subcooled water, and condenses at the interface directly. The DCC phenomenon accompanied with the heat transfer and mass transfer will lead to the temperature and pressure fluctuations in the tank, even some accidents under certain conditions. This paper investigates the transport phenomena concerning the DCC in the subcooled water tank using the computational fluid dynamics (CFD) commercial code, ANSYS-FLUENT, in which the DCC process is simulated with the Euler–Euler framework for two-phase flow, and the simplified Hertz–Knudsen–Schrage relation is adopted to model mass transfer. In the simulation, the flow field and temperature profile are derived. Moreover, the shape and size of the plume jet are also investigated.

References

1.
Gulawani
,
S.
,
Joshi
,
J.
,
Shah
,
M.
,
Ramaprasad
,
C.
, and ,
Shukla
,
D.
,
2006
, “
CFD Analysis of Flow Pattern and Heat Transfer in Direct Contact Steam Condensation
,”
Chem. Eng. Sci.
,
61
(
6
), pp.
5204
5220
. 0009-250910.1016/j.ces.2006.03.032
2.
Aya
,
I.
, and
Nariai
,
H.
,
1991
, “
Evaluation of Heat Transfer Coefficient at Direct Condensation of Cold Water and Steam
,”
Nucl. Eng. Des.
,
131
(
1
), pp.
17
24
. 0029-549310.1016/0029-5493(91)90314-8
3.
Chun
,
M. H.
,
Kim
,
Y. S.
, and
Park
,
J. W.
,
1996
, “
An Investigation of Direct Condensation of Steam Jet in Sub Cooled Water
,”
Int. Commun. Heat Mass Transfer
,
23
(
7
), pp.
947
958
.10.1016/0735-1933(96)00077-2
4.
Song
,
C. H.
,
Cho
,
S.
,
Kim
,
H. Y.
,
Bae
,
Y. Y.
, and
Chung
,
M. K.
,
1998
, “
Characterization of Direct Contact Condensation of Steam Jets Discharging Into a Subcooled Water
,”
Proceeding Experimental Tests and Qualification of Analytical Methods to Address Thermo Hydraulic Phenomena in Advanced Water Cooled Reactors
,
Villigen, Switzerland
.
5.
Liang
,
K. S.
, and
Griffith
,
P.
,
1994
, “
Experimental and Analytical Study of Direct Contact Condensation of Steam in Water
,”
Nucl. Eng. Des.
,
147
(
3
), pp.
425
435
. 0029-549310.1016/0029-5493(94)90225-9
6.
Ju
,
S. H.
,
No
,
H. C.
, and
Mayinger
,
F.
,
2000
, “
Measurement of Heat Transfer Coefficients for Direct Contact Condensation in Core Makeup Tanks Using Holographic Interferometer
,”
Nucl. Eng. Des.
,
199
(
1
), pp.
75
83
. 0029-5493
7.
Wu
,
X. Z.
,
Yan
,
J. J.
,
Shao
,
S. F.
,
Cao
,
Y.
, and
Liu
,
J. P.
,
2007
, “
Experimental Study on the Condensation of Supersonic Steam Jet Submerged in Quiescent Subcooled Water: Steam Plume Shape and Heat Transfer
,”
Int. J. Multiphase Flow
,
33
(
12
), pp.
1289
1307
. 0301-9322
8.
Jeje
,
A.
,
Asante
,
B.
, and
Ross
,
B.
,
1990
, “
Steam Bubbling Regimes and Direct Contact Condensation Heat Transfer in Highly Subcooled Water
,”
Chem. Eng. Sci.
,
45
(
3
), pp.
639
650
. 0009-250910.1016/0009-2509(90)87007-F
9.
Xu
,
Q.
,
Guo
,
L. J.
,
Zou
,
S. F.
, and
Chen
,
J. W.
,
2013
, “
Experimental Study on Direct Contact Condensation of Stable Steam Jet in Water Flow in a Vertical Pipe
,”
Int. J. Heat Mass Transfer
,
66
, pp.
808
817
. 0017-931010.1016/j.ijheatmasstransfer.2013.07.083
10.
Chan
,
C. K.
, and
Lee
,
C. K. B.
,
1982
, “
A Condensation Regime Map for Direct Contact Condensation
,”
Int. J. Multiphase Flow
,
8
(
1
), pp.
11
20
. 0301-932210.1016/0301-9322(82)90003-9
11.
Youn
,
D. H.
,
Ko
,
K. B.
,
Lee
,
Y. Y.
,
Kim
,
M. H.
,
Bae
,
Y. Y.
, and
Park
,
J. K.
,
2003
, “
The Direct Contact Condensation of Steam in a Pool at Low Mass Flux
,”
J. Nucl. Sci. Technol.
,
40
(
10
), pp.
881
885
. 0022-313110.1080/18811248.2003.9715431
12.
With
,
A. P.
,
Calay
,
R. K.
, and
With
,
G.
,
2007
, “
Three-Dimensional Condensation Regime Diagram for Direct Contact Condensation of Steam Injected Into Water
,”
Int. J. Heat Mass Transfer
,
50
(
9
), pp.
1762
1770
. 0017-931010.1016/j.ijheatmasstransfer.2006.10.017
13.
Gulawani
,
S. S.
,
Dahikar
,
S. K.
,
Mathpati
,
C. S.
,
Joshi
,
J. B.
,
Shah
,
M. S.
,
RamaPrasad
,
C.S.
, and
Shukla
,
D. S.
,
2009
, “
Analysis of Flow Pattern and Heat Transfer in Direct Contact Condensation
,”
Chem. Eng. Sci.
,
64
(
8
), pp.
1719
1738
. 0009-250910.1016/j.ces.2008.12.020
14.
Marsh
,
C.
, and
Withers
,
D.
,
2006
, “
CFD Modeling of Direct Contact Steam Injection
,”
Proceedings of the 5th International Conference on CFD in the Process Industries
,
Melbourne, Australia
.
15.
Dahikar
,
S. K.
,
Sathe
,
M. J.
, and
Joshi
,
J. B.
,
2010
, “
Investigation of Flow and Temperature Patterns in Direct Contact Condensation Using PIV, PLIF and CFD
,”
Chem. Eng. Sci.
,
65
(
16
), pp.
4606
4620
. 0009-250910.1016/j.ces.2010.05.004
16.
Lee
,
S.I
, and
No
,
H. C.
,
1998
, “
Improvement of Direct Contact Condensation Model of RELAP5/MOD3.1 for a Passive High-Pressure Injection System
,”
Ann. Nucl. Energy
,
25
(
9
), pp.
677
688
.10.1016/S0306-4549(97)00115-1
17.
Fluent Inc
.,
2012
,
Fluent 14.0 Theory Guide
,
Fluent Inc
,
Pittsburgh, PA
.
18.
Kundsen
,
M.
,
1934
,
The Kinetic Theory of Gases: Some Modern Aspects
,
Methuen & Co. Ltd.
,
London
.
19.
U.S. NRC
.,
2004
, “
Final Safety Evaluation Report, Related to Certification of the AP1000 Standard Design
,” Docket No. 52-006, Washington, DC.
20.
Jervey
,
R. A.
,
2012
, “
Water Sources for Long-Term Recirculation Cooling Following a Loss-of-Coolant Accident
,”
Federal Register (Regulatory Guide 1.82, U.S. NRC Regulations)
,
77
(
63
), pp.
19740
.
21.
Ji
,
Y.
,
Zhang
,
H. C.
,
Tong
,
J. F.
, et al,
2016
, “
Entropy Assessment on Direct Contact Condensation of Subsonic Steam Jets in a Water Tank Through Numerical Investigation
,”
Entropy
,
18
(
1
), pp.
21.1
23
.
22.
ASME
,
2006
,
Guide for Verification and Validation of Computational Solid Mechanics
,
ASME Standard V&V 10-2006
,
New York, NY
.
23.
Oberkampf
,
W. I.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation Scientific Computing
,
Cambridge University Press
,
Cambridge
.
24.
ANSYS Inc
.,
2012
,
ANSYS Fluid Dynamics Verification Manual
,
ANSYS Inc
,
Canonsburg, PA
.
25.
EI-Behery
,
W. M.
, and
Hamed
,
M. H.
,
2011
, “
A Comparative Study of Turbulence Models Performance for Separating Flow in a Planar Asymmetric Diffuser
,”
Comput. Fluids
,
44
(
1
), pp.
248
257
. 0045-793010.1016/j.compfluid.2011.01.009
26.
Gorji
,
S.
,
Seddighi
,
M.
,
Ariyaratne
,
C.
,
Vardy
,
A. E.
,
O’Donoghue
,
T.
,
Pokrajac
,
D.
, and
He
,
S.
,
2014
, “
A Comparative Study of Turbulence Models in a Transient Channel Flow
,”
Comput. Fluids
,
89
(
2
), pp.
111
123
. 0045-793010.1016/j.compfluid.2013.10.037
27.
Jin
,
Y.
, and
Herwig
,
H.
,
2015
, “
Turbulence Flow in a Rough Wall Channels: Validation of RANS Models
,”
Comput. Fluids
,
122
, pp.
34
46
. 0045-793010.1016/j.compfluid.2015.08.005
28.
Takase
,
K.
,
Ose
,
Y.
, and
Kunugi
,
T.
,
2002
, “
Numerical Study on Direct-Contact Condensation of Vapor in Cold Water
,”
Fusion Eng. Des.
,
63
(
2
), pp.
421
428
. 0920-379610.1016/S0920-3796(02)00269-7
You do not currently have access to this content.