We present here some theoretical and experimental results about the application of the time-domain reflectometry (TDR) technique to a once-through steam generator (OTSG) bayonet-type, which is considered here, from a new point of view, as a coaxial transmission line and used as a level monitoring device for its own dynamics. This original approach leads to the design of a new kind of sensor, employable as a general-level measuring system in harsh conditions as well. This sensor may offer some interesting features for the design of control systems for nuclear facilities as well as for oil and gas plants. In order to experimentally verify the theoretical part, a mockup has been designed and built, so as to be used as a level control for a dedicated hydraulic loop system both in static and dynamic conditions. The purpose of the hydraulic loop system is to implement a short-/medium-term transient-level dynamics requiring fast sensor response, online measurement, and some nonlinearity features that are crucial for its control. The obtained results show that the TDR application on the OTSG is feasible at standard ambient temperature and pressure (SATP) conditions, paving the way for tests at the operating pressure and temperature ranges of a real plant.

References

References
1.
Cataldo
,
A.
,
De Benedetto
,
E.
, and
Cannazza
,
G.
,
2016
,
Advances in Reflectometric Sensing for Industrial Applications
,
Morgan & Claypool Publishers
,
San Rafael, CA
.
2.
Anderson
,
N.
, and
Welch
,
D.
,
2000
, “
Practical Applications of Time Domain Reflectometry (TDR) to Monitor and Analyze Soil and Rock Slopes
,”
Geotechnical Measurements: Lab and Field
,
W. A.
Marr
,
, ed.,
ASCE
,
Reston, VA
, pp. 
65
79
.10.1061/9780784405185
3.
Nemarich
,
C.
,
2001
, “
Time Domain Reflectometry Liquid Level Sensor
,”
IEEE Instrum. Meas. Mag.
,
4
(
4
), pp. 
40
44
.10.1109/5289.975464
4.
Gerding
,
M.
,
Musch
,
T.
, and
Schiek
,
B.
,
2006
, “
A Novel Approach for a High-Precision Multitarget-Level Measurement System Based on Time-Domain Reflectometry
,”
IEEE Trans. Microwave Theory Tech.
,
54
(
6
), pp. 
2768
2773
. 0018-948010.1109/TMTT.2006.874891
5.
Thomsen
,
A.
,
Hansen
,
B.
, and
Schelde
,
K.
,
2000
, “
Application of TDR to Water Level Measurement
,”
J. Hydrol.
,
236
, pp. 
252
258
. 0022-169410.1016/S0022-1694(00)00305-X
6.
Viswanath
,
S.
,
Belcastro
,
M.
,
Barton
,
J.
,
O’Flynn
,
B.
,
Holmes
,
N.
, and
Dixon
,
P.
,
2015
, “
Low-Power Wireless Liquid Monitoring System Using Ultrasonic Sensors
,”
Int. J. Smart Sens. Intell. Syst.
,
8
(
1
), pp. 
26
44
.
7.
Friel
,
R.
, and
Or
,
D.
,
1999
, “
Frequency Analysis of Time-Domain Reflectometry (TDR) With Application to Dielectric Spectroscopy of Soil Constituents
,”
Geophysics
,
64
(
3
), pp. 
707
718
. 0016-803310.1190/1.1444580
8.
Bera
,
S. C.
,
Mandal
,
H.
,
Saha
,
S.
, and
Dutta
,
A.
,
2014
, “
Study of a Modified Capacitance-Type Level Transducer for any Type of Liquid
,”
IEEE Trans. Instrum. Meas.
,
63
(
3
), pp. 
641
649
. 0018-945610.1109/TIM.2013.2282194
9.
Cordella
,
F.
,
Cappelli
,
M.
, and
Sepielli
,
M.
,
2014
, “
Using the Reflectometric Technique for Monitoring the Boiling Flow Dynamics in a Once Through Steam Generator
,”
Proceedings of the 22nd International Conference on Nuclear Engineering ICONE22
, Vol. 
6
,
July 7–11
,
ASME
,
New York
.
10.
Cordella
,
F.
,
Cappelli
,
M.
, and
Sepielli
,
M.
,
2015
, “
Level Dynamics Monitoring using a Coaxial Reflectometric Sensor and a Low-Pulsatility Pump: preliminary experimental results
,”
Proceedings of the 23rd International Conference on Nuclear Engineering ICONE23
,
May 17–21
,
Chiba, Japan
.
11.
Dolezal
,
R.
, and
Varcop
,
L.
,
1970
,
Process Dynamics
,
Elsevier Publishing
,
New York
.
12.
Ray
,
A.
,
1980
, “
Dynamic Modeling of Once-Through Subcritical Steam Generator for Solar Applications
,”
Appl. Math. Model.
,
4
(
6
), pp. 
417
423
. 0307-904X10.1016/0307-904X(80)90173-0
13.
Ray
,
A.
,
1981
, “
Nonlinear Dynamic Model of a Solar Steam Generator
,”
Solar Energy
,
26
(
4
), pp. 
297
306
. 0038-092X10.1016/0038-092X(81)90175-4
14.
Tzanos
,
C. P.
,
1988
, “
Movable Boundary Model for Once-Through Steam Generator Analysis
,”
Nucl. Technol.
,
82
(
1
), pp. 
5
17
.
15.
Abdalla
,
M. A.
,
1994
, “
A Four-Region, Moving-Boundary Model of a Once-Through, Helical Coil Steam Generator
,”
Ann. Nucl. Energy
,
21
(
9
), pp. 
541
562
. 0306-454910.1016/0306-4549(94)90078-7
16.
Li
,
H.
,
Huang
,
X.
, and
Zhang
,
L.
,
2008
, “
A Lumped Parameter Dynamic Model of the Helical Coiled Once-Through Steam Generator With Movable Boundaries
,”
Nucl. Eng. Des.
,
238
(
7
), pp. 
1657
1663
. 0029-549310.1016/j.nucengdes.2008.01.009
17.
Jingyan
,
Z.
,
Guo
,
Y.
, and
Zhijian
,
Z.
,
2012
, “
Dynamic Simulation of Once-Through Steam Generator With Concentric Annuli Tube
,”
Ann. Nucl. Energy
,
50
, pp. 
185
198
. 0306-454910.1016/j.anucene.2012.04.027
18.
Maffezzoni
,
C.
,
1989
,
The Dynamics of Steam Generators
,
Masson Ed.
, (in Italian).
19.
Magnusson
,
P. C.
,
Weisshaar
,
A.
,
Tripathi
,
V. K.
, and
Alexander
,
G. C.
,
2001
,
Transmission Lines and Wave Propagation
,
4th ed.
,
CRC Press
,
Boca Raton
.
20.
Orfanidis
,
S. J.
,
2016
, “
Electromagnetic Waves and Antennas
.” Available: ∼http://www.ece.rutgers.edu/∼orfanidi/ewa/.
21.
Pozar
,
D. M.
,
2011
,
Microwave Engineering
,
4th ed.
,
Wiley
,
Hoboken, NJ
.
22.
Buchner
,
R.
,
Barthel
,
J.
, and
Stauber
,
J.
,
1999
, “
The Dielectric Relaxation of Water Between 0°C and 35°C
,”
Chem. Phys. Lett.
,
306
, pp. 
57
63
. 0009-261410.1016/S0009-2614(99)00455-8
23.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1979
,
Nonlinear Oscillation
,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.