The method for predicting countercurrent flow limitation (CCFL) and its uncertainty in an actual pressurizer surge line of a pressurized water reactor (PWR) using 1/10-scale air–water experimental data, one-dimensional (1D) computations, and three-dimensional (3D) numerical simulations was proposed. As one step of the prediction method, 3D numerical simulations were carried out for countercurrent air–water flows in a 1/10-scale model of the pressurizer surge line to evaluate capability of the 3D simulation method and decide uncertainty of CCFL characteristics evaluated for the 1/10-scale model. The model consisted of a vertical pipe, a vertical elbow, and a slightly inclined pipe with elbows. In the actual 1/10-scale experiment, air supplied into the lower tank flowed upward to the upper tank and water supplied into the upper tank gravitationally flowed downward to the lower tank through the pressurizer surge line. In the 3D simulation, however, water was supplied from the wall surface of the vertical pipe to avoid effects of flooding at the upper end (the 3D simulation largely underestimated falling water flow rates at the upper end). Then, the flow pattern in the slightly inclined pipe was successfully reproduced, and the simulated CCFL values for the inclination angle of θ=0.6  deg (slope of 1/100) agreed well with the experimental CCFL data. The uncertainty among air–water experiments, 1D computations, and 3D simulations for the 1/10-scale model was dC=±0.015 for the CCFL constant of C=0.50. The effects of θ (θ=0,1.0 deg) on CCFL characteristics were simulated and discussed.

References

References
1.
Richter
,
H. J.
,
Wallis
,
G. B.
,
Carter
,
K. H.
, and
Murphy
,
S. L.
,
1978
, “
Deentrainment and Countercurrent Air-Water Flow in a Model PWR Hot-Leg
,”
U. S. Nuclear Regulatory Commission
, .
2.
Mayinger
,
F.
,
Weiss
,
P.
, and
Wolfert
,
K.
,
1993
, “
Two-Phase Flow Phenomena in Full-Scale Reactor Geometry
,”
Nucl. Eng. Des.
,
145
(
1–2
), pp. 
47
61
. 0029-549310.1016/0029-5493(93)90058-H
3.
Geffraye
,
G.
,
Bazin
,
P.
,
Pichon
,
P.
, and
Bengaouer
,
A.
,
1995
, “
CCFL in Hot Legs and Steam Generators and Its Prediction With the CATHARE Code
,”
Proceedings of the 7th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-7)
,
Saratoga Springs, NY
,
Sep. 10–15
,
American Nuclear Society
,
La Grange Park, IL
, pp. 
815
826
.
4.
Al Issa
,
S.
, and
Macian
,
R.
,
2014
, “
Experimental Investigation of Countercurrent Flow Limitation (CCFL) in a Large-Diameter Hot-Leg Geometry: A Derailed Description of CCFL Mechanisms, Flow Patterns and High-Quality HSC Imaging of the Interfacial Structure in a 1/3.9 Scale of PWR Geometry
,”
Nucl. Eng. Des.
,
280
(
Dec.
), pp. 
550
563
. 0029-549310.1016/j.nucengdes.2014.08.021
5.
Minami
,
N.
,
Nishiwaki
,
D.
,
Nariai
,
T.
,
Tomiyama
,
A.
, and
Murase
,
M.
,
2010
, “
Countercurrent Gas-Liquid Flow in a PWR Hot Leg under Reflux Cooling (I) Air-Water Tests for 1/15-Scale Model of a PWR Hot Leg
,”
J. Nucl. Sci. Technol.
,
47
(
2
), pp. 
142
148
.10.1080/18811248.2010.9711938
6.
Kinoshita
,
I.
,
Murase
,
M.
,
Utanohara
,
Y.
,
Lucas
,
D.
,
Vallée
,
C.
, and
Tomiyama
,
A.
,
2014
, “
Effects of Shape and Size on Countercurrent Flow Limitation in Flow Channels Simulating a PWR Hot Leg
,”
Nucl. Technol.
,
187
(
1
), pp. 
44
56
.
7.
Murase
,
M.
,
Tomiyama
,
A.
,
Lucas
,
D.
,
Kinoshita
,
I.
,
Utanohara
,
Y.
, and
Yanagi
,
C.
,
2012
, “
Correlation for Countercurrent Flow Limitation in a PWR Hot Leg
,”
J. Nucl. Sci. Technol.
,
49
(
4
), pp. 
398
407
.10.1080/00223131.2012.669241
8.
Wallis
,
G. B.
,
1969
,
One-Dimensional Two-Phase Flow
,
McGraw-Hill
,
New York
, pp. 
336
345
.
9.
Takeuchi
,
K.
,
Young
,
M. Y.
, and
Gagnon
,
A. F.
,
1999
, “
Flooding in the Pressurizer Surge Line of AP600 Plant and Analyses of APEX Data
,”
Nucl. Eng. Des.
,
192
(
1
), pp. 
45
58
. 0029-549310.1016/S0029-5493(99)00084-9
10.
Vierow
,
K.
,
Choutapalli
,
I.
,
Hogan
,
K.
,
Liao
,
Y.
,
Solmos
,
M.
, and
Williams
,
S. N.
,
2008
, “
Countercurrent Flow Limitation Experiments and Modeling for Improved Reactor Safety
,”
Nuclear Engineering Department, Texas A&M University
,
College Station, TX
.
11.
Cllum
,
W.
,
Reid
,
J.
, and
Vierow
,
K.
,
2012
, “
Water Inlet Subcooling Effects on Flooding With Steam and Water in a Large Diameter Vertical Tube
,”
The 2012 Japan-U.S. Seminar on Two-Phase Flow Dynamics
,
Tokyo
,
June 7–12
,
Tokyo Univ. Marine Science and Technology
,
Tokyo
, T09.
12.
Futatsugi
,
T.
,
Yanagi
,
C.
,
Murase
,
M.
,
Hosokawa
,
S.
, and
Tomiyama
,
A.
,
2012
, “
Countercurrent Air-Water Flow in a Scale-Down Model of a Pressurizer Surge Line
,”
Sci. Technol. Nucl. Installations
,
2012
(
2012
), pp. 
1
7
.10.1155/2012/174838
13.
Murase
,
M.
,
Kinoshita
,
I.
,
Kusunoki
,
T.
,
Lucas
,
D.
, and
Tomiyama
,
A.
,
2015
, “
Countercurrent Flow Limitation in a Slightly Inclined Pipe With Elbows
,”
Trans. ASME J. Nucl. Eng. Radiation Sci.
,
1
(
4
),
041009
.10.1115/1.4031032
14.
Doi
,
T.
,
Futatsugi
,
T.
,
Murase
,
M.
,
Hayashi
,
K.
,
Hosokawa
,
S.
, and
Tomiyama
,
A.
,
2012
, “
Countercurrent Flow Limitation at the Junction Between the Surge Line and the Pressurizer of a PWR
,”
Sci. Technol. Nucl. Installations
,
2012
(
2012
), pp. 
1
10
.10.1155/2012/754724
15.
Utanohara
,
Y.
,
Kinoshita
,
I.
,
Murase
,
M.
,
Minami
,
N.
,
Nariai
,
T.
, and
Tomiyama
,
A.
,
2011
, “
Numerical Simulation Using CFD Software of Countercurrent Gas-Liquid Flow in a PWR Hot Leg Under Reflux Condition
,”
Nucl. Eng. Des.
,
241
(
5
), pp. 
1643
1655
. 0029-549310.1016/j.nucengdes.2011.01.051
16.
Wang
,
M. J.
, and
Mayinger
,
F.
,
1995
, “
Simulation and Analysis of Thermal-Hydraulic Phenomena in a PWR Hot Leg Related to SBLOCA
,”
Nucl. Eng. Des.
,
155
(
3
), pp. 
643
652
. 0029-549310.1016/0029-5493(95)00977-K
17.
Aan
,
D.
,
Höhne
,
T.
,
Lucas
,
D.
, and
Vallée
,
C.
,
2010
, “
Numerical Simulation of Air-Water Counter-Current Two-Phase Flow in a Model of the Hot-Leg of a Pressurized Water Reactor (PWR)
,”
Proceedings of 7th International Conference on Multiphase Flow (ICMF 2010)
,
Tampa, FL
,
May 30–June 4
,
University of Florida
,
Gainesville, FL
.
18.
Höhne
,
T.
,
Aan
,
D.
, and
Lucas
,
D.
,
2011
, “
Numerical Simulations of Counter-Current Two-Phase Flow Experiments in a PWR Hot Leg Model Using an Interfacial Area Density Model
,”
Int. J. Heat Fluid Flow
,
32
(
5
), pp. 
1047
1056
. 0142-727X10.1016/j.ijheatfluidflow.2011.05.007
19.
Al Issa
,
S.
, and
Macian-Juan
,
R.
,
2016
, “
Experimental Investigation and CFD Validation of Countercurrent Flow Limitation (CCFL) in a Large-Diameter Hot-Leg PWR Geometry
,”
J. Nucl. Sci. Technol.
,
53
(
5
), pp. 
647
655
.10.1080/00223131.2015.1125312
20.
Murase
,
M.
,
Utanohara
,
Y.
,
Yanagi
,
C.
,
Takata
,
T.
,
Yamaguchi
,
A.
, and
Tomiyama
,
A.
,
2013
, “
Numerical Simulation of Countercurrent Flow Limitation in a PWR Hot Leg by Using Two-Fluid Model
,”
J. Energy Power Eng.
,
7
(
7
), pp. 
1215
1222
.
21.
Murase
,
M.
,
Tomiyama
,
A.
,
Kinoshita
,
I.
,
Utanohara
,
Y.
,
Yanagi
,
C.
,
Takata
,
T.
, and
Yamaguchi
,
A.
,
2012
, “
VOF Calculations of Countercurrent Gas-Liquid Flow in a PWR Hot Leg
,”
Sci. Technol. Nucl. Installations
,
2012
(
2012
), pp. 
1
9
.10.1155/2012/935391
22.
Kusunoki
,
T.
,
Doi
,
T.
,
Fujii
,
Y.
,
Tsuji
,
T.
,
Murase
,
M.
, and
Tomiyama
,
A.
,
2014
, “
Air-Water Tests on Counter-current Flow Limitation at Lower End of Vertical Pipe Simulating Lower Part of Steam Generator U-tube
,”
Jpn. J. Multiphase Flow
,
28
(
1
), pp. 
62
70
(in Japanese).10.3811/jjmf.28.62
23.
Kusunoki
,
T.
,
Murase
,
M.
,
Takata
,
T.
, and
Tomiyama
,
A.
,
2014
, “
Numerical Simulations of Counter-Current Flow Limitation at Lower End of Vertical Pipe Simulating Lower Part of Steam Generator U-tube
,”
Jpn. J. Multiphase Flow
,
28
(
3
), pp. 
345
354
(in Japanese).10.3811/jjmf.28.345
24.
Murae
,
M.
,
Kinoshita
,
I.
, and
Kusunoki
,
T.
,
2016
, “
Prediction Accuracy of One-Dimensional Computation for Countercurrent Flow Limitation in Horizontal Pipes
,”
Jpn. J. Multiphase Flow
,
29
(
5
), pp. 
523
531
(in Japanese).10.3811/jjmf.29.523
You do not currently have access to this content.