For fluids at supercritical pressure, the phase change from liquid to gas does not exist. Meanwhile, the fluid properties change drastically in a narrow temperature range. With supercritical fluid as working fluid in a heated pipe, heat-transfer deterioration and recovery have been observed, which corresponds to the turbulent flow relaminarization and recovery. Direct numerical simulation (DNS) of supercritical carbon dioxide flow in a heated vertical circular pipe is developed with the open-source code OpenFOAM in this study. Forced-convection and mixed-convection cases including upward and downward flow have been considered in the simulation. In the forced convection, flow turbulence is attenuated due to acceleration from thermal expansion, which leads to a peak of the wall temperature. However, buoyancy shows a stronger impact on the flow. In the upward flow, the average streamwise velocity distribution turns into an M-shaped profile because of the external effect of buoyancy. Besides that, negative buoyancy production caused by the density variation reduces the Reynolds shear stress to almost zero, which means that the flow is relaminarized. Further downstream, turbulence is recovered. This behavior of flow turbulence is confirmed by visualization of turbulent streaks and vortex structures.

References

1.
The National Institute of Standards and Technology
,
2015
, “
Nist Chemistry Webbook
,” , http://webbook.nist.gov/chemistry/.
2.
Brunner
,
G.
,
2010
, “
Applications of Supercritical Fluids
,”
Ann. Rev. Chem. Biomol. Eng.
,
1
(
1
), pp.
321
342
.10.1146/annurev-chembioeng-073009-101311
3.
Dostal
,
V.
,
Driscoll
,
M. J.
, and
Hejzlar
,
P.
,
2004
, “
A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors
,” PhD thesis,
Massachusetts Institute of Technology
, Cambridge, MA.
4.
Shiralkar
,
B. S.
, and
Griffith
,
P.
,
1968
, “
The deterioration in heat transfer to fluids at supercritical pressure and high heat fluxes
,” ,
Department of Mechanical Engineering, Engineering Projects Laboratory, MIT
, Cambridge, MA.
5.
Bae
,
Y.-Y.
, and
Kim
,
H.-Y.
,
2009
, “
Convective Heat Transfer to co2 at a Supercritical Pressure Flowing Vertically Upward in Tubes and an Annular Channel
,”
Exp. Therm. Fluid Sci.
,
33
(
2
), pp.
329
339
.10.1016/j.expthermflusci.2008.10.002
6.
Licht
,
J.
,
Anderson
,
M.
, and
Corradini
,
M.
,
2008
, “
Heat Transfer to Water at Supercritical Pressures in a Circular and Square Annular Flow Geometry
,”
Int. J. Heat Fluid Flow
,
29
(
1
), pp.
156
166
.10.1016/j.ijheatfluidflow.2007.09.007
7.
Li
,
Z.-H.
,
Jiang
,
P.-X.
,
Zhao
,
C.-R.
, and
Zhang
,
Y.
,
2010
, “
Experimental Investigation of Convection Heat Transfer of CO2 at Supercritical Pressures in a Vertical Circular Tube
,”
Exp. Therm. Fluid Sci.
,
34
(
8
), pp.
1162
1171
.10.1016/j.expthermflusci.2010.04.005
8.
Duffey
,
R. B.
, and
Pioro
,
I. L.
,
2005
, “
Experimental Heat Transfer of Supercritical Carbon Dioxide Flowing Inside Channels (Survey)
,”
Nucl. Eng. Des.
,
235
(
8
), pp.
913
924
.10.1016/j.nucengdes.2004.11.011
9.
Yoo
,
J. Y.
,
2013
. “
The Turbulent Flows of Supercritical Fluids With Heat Transfer
,”
Ann. Rev. Fluid Mech.
,
45
(
1
), pp.
495
525
.10.1146/annurev-fluid-120710-101234
10.
He
,
S.
,
Kim
,
W. S.
, and
Bae
,
J. H.
,
2008
, “
Assessment of Performance of Turbulence Models in Predicting Supercritical Pressure Heat Transfer in a Vertical Tube
,”
Int. J. Heat Mass Transfer
,
51
(
19–20
), pp.
4659
4675
.10.1016/j.ijheatmasstransfer.2007.12.028
11.
Cheng
,
X.
,
Kuang
,
B.
, and
Yang
,
Y. H.
,
2007
, “
Numerical Analysis of Heat Transfer in Supercritical Water Cooled Flow Channels
,”
Nucl. Eng. Des.
,
237
(
3
), pp.
240
252
.10.1016/j.nucengdes.2006.06.011
12.
Yang
,
J.
,
Oka
,
Y.
,
Ishiwatari
,
Y.
,
Liu
,
J.
, and
Yoo
,
J.
,
2007
, “
Numerical Investigation of Heat Transfer in Upward Flows of Supercritical Water in Circular Tubes and Tight Fuel Rod Bundles
,”
Nucl. Eng. Des.
,
237
(
4
), pp.
420
430
.10.1016/j.nucengdes.2006.08.003
13.
Bae
,
J. H.
,
Yoo
,
J. Y.
, and
Choi
,
H.
,
2005
, “
Direct Numerical Simulation of Turbulent Supercritical Flows With Heat Transfer
,”
Phys. Fluids
,
17
(
10
), p.
105104
.10.1063/1.2047588
14.
Bae
,
J. H.
,
Yoo
,
J. Y.
, and
McEligot
,
D. M.
,
2008
, “
Direct Numerical Simulation of Heated CO2 Flows at Supercritical Pressure in a Vertical Annulus at Re=8900
,”
Phys. Fluids
,
20
(
5
), p.
055108
.10.1063/1.2927488
15.
Nemati
,
H.
,
Patel
,
A.
,
Boersma
,
B. J.
, and
Pecnik
,
R.
,
2015
, “
Mean Statistics of a Heated Turbulent Pipe Flow at Supercritical Pressure
,”
Int. J. Heat Mass Transfer
,
83
, pp.
741
752
.10.1016/j.ijheatmasstransfer.2014.12.039
16.
Ničeno
,
B.
, and
Sharabi
,
M.
,
2013
, “
Large Eddy Simulation of Turbulent Heat Transfer at Supercritical Pressures
,”
Nucl. Eng. Des.
,
261
, pp.
44
55
.10.1016/j.nucengdes.2013.03.042
17.
OpenFOAM Foundation
,
2013
, “
Openfoam User Guide
,” No. Version 2.2.2, http://foam.sourceforge.net/docs/Guides-a4/UserGuide.pdf.
18.
Leonard
,
B. P.
,
1979
, “
A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation
,”
Comput. Methods Appl. Mech. Eng.
,
19
(
1
), pp.
59
98
.10.1016/0045-7825(79)90034-3
19.
Orlanski
,
I.
,
1976
, “
A Simple Boundary Condition for Unbounded Hyperbolic Flows
,”
J. Comput. Phys.
,
21
(
3
), pp.
251
269
.10.1016/0021-9991(76)90023-1
20.
Tabor
,
G. R.
, and
Baba-Ahmadi
,
M. H.
,
2010
, “
Inlet Conditions for Large Eddy Simulation: A Review
,”
Comput. Fluids
,
39
(
4
), pp.
553
567
.10.1016/j.compfluid.2009.10.007
21.
Eggels
,
J.
,
Unger
,
F.
,
Weiss
,
M. H.
,
Westerweel
,
J.
,
Adrian
,
R. J.
,
Friedrich
,
R.
, and
Nieuwstadt
,
F.
,
1994
, “
Fully Developed Turbulent Pipe Flow: A Comparison Between Direct Numerical Simulation and Experiment
,”
J. Fluid Mech.
,
268
, pp.
175
210
.10.1017/S002211209400131X
22.
Komen
,
E.
,
Shams
,
A.
,
Camilo
,
L.
, and
Koren
,
B.
,
2014
. “
Quasi-dns Capabilities of Openfoam for Different Mesh Types
,”
Comput. Fluids
,
96
, pp.
87
104
.10.1016/j.compfluid.2014.02.013
23.
Shehata
,
A. M.
, and
McEligot
,
D. M.
,
1995
, “
Turbulence Structure in the Viscous Layer of Strongly Heated Gas Flows
,” ,
Lockheed Idaho Technologies Co.
, Idaho Falls, ID.
24.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge
.
You do not currently have access to this content.