An optimal design analysis is carried out for an explosives’ detection system (EDS) based on thermal neutron activation (TNA) of a sample under investigation. The objective of this work is to use a genetic algorithm (GA) to obtain the optimized moderator design that would yield the “best” signal in a detection system. In a preliminary analysis, a full Monte Carlo (MC) simulation is carried out to estimate the effectiveness of various moderators, namely, water, graphite, and beryllium with respect to radiative capture (n,γ) reactions in a sample under investigation. Since MC simulation is computationally “expensive,” it is generally not used for random-search-based optimization analysis. Thus, more efficient methods are required for the design of optimal nuclear systems, where neutron transport is accurately modeled and iteratively solved for estimating the effect of independent design parameters. This paper proposes a computational scheme in which GA is coupled with the two-group neutron diffusion equation (DE) for carrying out an optimization analysis. The coupled GA-DE optimization scheme is demonstrated for obtaining the optimal moderator design. It is found that with considerably less computational effort than in an elaborate MC computation, the GA-DE approach can be used for the optimal design of detection systems.

References

References
1.
Kuznetsov
,
A. V.
,
Osetrov
,
P.
, and
Stancl
,
M.
,
2006
, “Detection of Improvised Explosives (IE) and Explosive Devices (IED),”
Detection and Disposal of Improvised Explosives
,
H.
Schubert
,
and
A.
Kuznetsov
, eds.,
Springer
,
Netherlands
, pp.
7
25
.
2.
Lanza
,
R. C.
,
2007
, “Neutron Techniques for Detection of Explosives”
Counterterrorist Detection Techniques of Explosives
,
J.
Yinon
,
, ed.,
Elsevier B.V.
,
Netherlands
, pp.
131
155
.
3.
Whetstone
,
Z. D.
, and
Kearfott
,
K. J.
,
2014
, “
A Review of Conventional Explosives Detection Using Active Neutron Interrogation
,”
J. Radioanal. Nucl. Chem.
,
301
(
3
), pp.
629
639
. 0236-573110.1007/s10967-014-3260-5
4.
Donzella
,
A.
,
Bodini
,
I.
,
Zenoni
,
A.
,
Fontana
,
A.
,
Perot
,
B.
,
Bernard
,
S.
,
Carasco
,
C.
,
Mariani
,
A.
,
Sudac
,
D.
, and
Valkovic
,
V.
,
2007
, “
Experimental Validation of MCNP Simulations for the EURITRACK Tagged Neutron Inspection System
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
,
261
(
1
2
), pp.
291
294
.10.1016/j.nimb.2007.03.090
5.
Runkle
,
R. C.
,
White
,
T. A.
,
Miller
,
E. A.
,
Caggiano
,
J. A.
, and
Collins
,
B. A.
,
2009
, “
Photon and Neutron Interrogation Techniques for Chemical Explosives Detection in Air Cargo: A Critical Review
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
,
603
(
3
), pp.
510
528
.10.1016/j.nima.2009.02.015
6.
Koltick
,
D.
,
Kim
,
Y.
,
McConchie
,
S.
,
Novikov
,
I.
,
Belbot
,
M.
, and
Gardner
,
G.
,
2007
, “
A Neutron Based Vehicle-Borne Improvised Explosive Device Detection System
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
,
261
(
1–2
), pp.
277
280
.10.1016/j.nimb.2007.03.047
7.
Yoshikawa
,
K.
,
Masuda
,
K.
,
Takamatsu
,
T.
,
Fujimoto
,
T.
,
Shiroya
,
S.
,
Misawa
,
T.
,
Takahashi
,
Y.
,
Ohnishi
,
M.
,
Osawa
,
H.
,
Hotta
,
E.
, and
Yamauchi
,
K.
,
2007
, “Current Status of R&D of the Humanitarian Landmine Detection System by a Compact Fusion Neutron Source,”
Proceedings of an IAEA Technical Meeting
,
Padova, Italy
,
13–17 Nov. 2006
, , pp.
1
4
.
8.
Faust
,
A. A.
,
Chesney
,
R. H.
,
Das
,
Y.
,
McFee
,
J. E.
, and
Russell
,
K. L.
,
2005
, “
Canadian Tele-Operated Landmine Detection Systems. Part I: The Improved Landmine Detection Project
,”
Int. J. Syst. Sci.
36
(
9
), pp.
511
528
.10.1080/00207720500157668
9.
Clifford
,
E. T. H.
,
McFee
,
J. E.
,
Ing
,
H.
,
Andrews
,
H. R.
,
Tennant
,
D.
,
Harper
,
E.
, and
Faust
,
A. A.
,
2007
, “
A Militarily Fielded Thermal Neutron Activation Sensor for Landmine Detection
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
,
579
(
1
), pp.
418
425
. 0168-900210.1016/j.nima.2007.04.091
10.
Briesmeister
,
J. F.
, ed.,
1986
, “MCNP—A General Purpose Monte Carlo Code for Neutron and Photon Transport,”
Los Alamos National Laboratory
,
Los Alamos, NM
, LA-7396-M, Rev. 2.
11.
Uchai
,
W.
,
Changkian
,
S.
,
Zhu
,
L.
, and
Sun
,
H.
,
2008
, “
Experiment on the Performance of the Neutron Based Explosives Detection System Using Cf252 and Am241/Be9
,”
Suranaree J. Sci. Tech.
15
(
2
), pp.
139
147
.
12.
Johll
,
M.
,
2009
, “
MCNP Simulations for Standoff Bomb Detection Using Neutron Interrogation
,” M.S. thesis,
Kansas State University
, Manhattan, KS.
13.
Graca
,
C. O.
,
Lewins
,
J. D.
, and
Parks
,
G. T.
,
1988
, “
Optimization of Blanket Design for Fusion Reactors by Higher Order Perturbation Theory
,”
Nucl. Energy
,
27
(
2
), pp.
121
130
.
14.
Suda
,
N.
,
Yamaguchi
,
T.
, and
Sakurai
,
Y.
,
1968
, “
Optimization of Neutron Flux Distribution
,”
J. Nucl. Sci. Tech.
,
5
(
9
), pp.
452
457
.10.1080/18811248.1968.9732493
15.
Lee
,
C. K.
,
1973
, “
Critical Mass Minimization of a Cylindrical Geometry Reactor by Two-Group Diffusion Equation
,”
J. Korean Nucl. Soc.
,
5
(
2
), pp.
115
131
. 0372-7327
16.
Rief
,
H.
,
1984
, “
Generalized Monte Carlo Perturbation Algorithms for Correlated Sampling and a Second-Order Taylor Series Approach
,”
Ann. Nucl. Energy
,
11
(
9
), pp.
455
476
.10.1016/0306-4549(84)90064-1
17.
Koreshi
,
Z. U.
, and
Lewins
,
J. D.
,
1990
, “
Two-Group Monte Carlo Perturbation Theory and Applications in Fixed-Source Problems
,”
Prog. Nucl. Energy
,
24
(
1–3
), pp.
27
38
.10.1016/0149-1970(90)90020-6
18.
Holland
,
J. H.
,
1975
,
Adaptation in Natural and Artificial Systems
, Chap. 1,
University of Michigan Press
,
Ann Arbor, MI
.
19.
Lamarsh
,
J. R.
, and
Baratta
,
A. J.
,
2001
,
Introduction to Nuclear Engineering
,
3rd ed.
, Chap. 5,
Prentice Hall
,
Upper Saddle River, NJ
.
20.
Sekimoto
,
H.
,
2007
, “
Nuclear Reactor Theory
,”
Center of Excellence—Innovative Nuclear Energy Systems for Sustainable Development of the World (COE-INES)
,
Tokyo Institute of Technology
,
Tokyo, Japan
, Part 2.
You do not currently have access to this content.