An experiment of natural circulation of supercritical water in parallel channels was performed in bare tubes of inner diameter 7.98 mm and heated length 1.3 m, covering the ranges of pressure of 24.7–25.5 MPa, mass flux of 4001000  kg/m2s, and heat flux of up to 1.83  MW/m2. When the heat flux reached 1.12  MW/m2, the outlet water temperature jumped from 325°C to 360°C, associated with a decrease in the flow rate and an initiation of dynamic instability. When the heat flux exceeded 1.39  MW/m2, the flow instability was stronger, and the flow rate increased in one channel and decreased in another one. Until the heat flux reached 1.61  MW/m2, the outlet water temperatures of two channels reached the pseudocritical point, and the flow rates of two channels tended to close each other. The experiment with a single heated channel was also performed for comparison. The measurements on the heat-transfer coefficients (HTCs) were compared to the calculations by the Bishop et al., Jackson’s, and Mokry et al. correlations, showing different agreements within various conditions.

References

References
1.
Saha
,
D.
, and
Clevelend
,
J.
,
2008
, “Natural Circulation in Nuclear Reactor Systems,”
Science and Technology in Nuclear Installations
, Vol. 
2008
,
Hindawi Publishing Corporation
,
Cairo
.
2.
IAEA
,
2014
, “
Heat Transfer Behavior and Thermohydraulics Code Testing for Supercritical Water Cooled Reactors (SCWRs)
,” IAEA-TECDOC-1746.
3.
Bishop
,
A.
,
Sandberg
,
R.
, and
Tong
,
L.
,
1964
, “
Forced Convection Heat Transfer to Water at Near-Critical Temperatures and Supercritical Pressures
,” WCAP-2056.
4.
Swenson
,
H. S.
,
Carver
,
J. R.
, and
Kakarala
,
C. R.
,
1965
, “
Heat Transfer to Supercritical Water in Smooth-Bore Tubes
,”
ASME J. Heat Transfer
,
87
(
4
), pp. 
477
484
.10.1115/1.3689139
5.
Yamagata
,
K.
,
Nishigawa
,
K.
,
Hasegawa
,
S.
,
Fuju
,
T.
, and
Yoshida
,
S.
,
1972
, “
Forced Convective Heat Transfer to Supercritical Water Flowing in Tubes
,”
Int. J. Heat Mass Transfer
,
15
(
12
), pp. 
2575
2593
. 0017-931010.1016/0017-9310(72)90148-2
6.
Watts
,
M. J.
, and
Chou
,
C. T.
,
1982
, “
Mixed Convection Heat Transfer to Supercritical Pressure Water
,”
Proceedings of the 7th International Heat Transfer Conference
, Vol. 
3
,
The Scientific Research Society
,
Munich, Sigma Xi
, pp. 
495
500
, Paper No. MC16.
7.
Pioro
,
I.
, and
Mokry
,
S.
,
2011
, “Heat Transfer to Fluids at Supercritical Pressures,”
Heat Transfer—Theoretical Analysis, Experimental Investigations and Industrial Systems
,
A. Belmiloudi
, ed.,
InTech
,
Rijeka, Croatia
, pp. 
481
504
.
8.
Xiong
,
T.
,
Yan
,
X.
,
Xiao
,
Z. J.
,
Li
,
Y. L.
,
Huang
,
Y.
, and
Yu
,
J. C.
,
2012
, “
Experimental Study on Flow Instability in Parallel Channels With Supercritical Water
,”
Ann. Nucl. Energy
,
48
(
2012
), pp. 
60
67
. 0306-454910.1016/j.anucene.2012.05.018
9.
Chen
,
Y.
,
Yang
,
C.
,
Zhao
,
M.
,
Bi
,
K.
, and
Du
,
K.
,
2014
, “
Forced Convective Heat Transfer Experiment of Supercritical Water in Different Diameters of Tubes
,”
J. Energy Power Eng.
,
8
(
9
), pp. 
1495
1504
.
10.
Zahlan
,
H.
,
Groeneveld
,
D. C.
,
Tavoularis
,
S.
,
Mokry
,
S.
, and
Pioro
,
I.
,
2011
, “
Assessment of Supercritical Heat Transfer Prediction Methods
,”
The 5th International Symposiumon SCWR (ISSCWR-5)
,
Vancouver, BC, Canada
,
Mar. 13–16
.
11.
Mokry
,
S.
,
Gospodinov
,
G. Y.
,
Pioro
,
I.
, and
Kirillov
,
P.
,
2009
, “
Supercritical Water Heat Transfer Correlation for Vertical Bare Tubes
,”
Proceedings of the 17th International Conference on Nuclear Engineering ICONE-17
,
July 12–16
,
ASME
,
Brussels, Belgium
, Paper No.76010.
12.
Cheng
,
X.
,
Yang
,
Y. H.
, and
Huang
,
S. H.
,
2009
, “
A Simple Heat Transfer Correlation for SC Fluid Flow in Circular Tubes
,”
Proceedings of the 13th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-13)
,
Kanazawa City, Ishikawa Prefecture, Japan
,
Sept. 27–Oct. 2
.
13.
Bae
,
Y. Y.
, and
Kim
,
H. Y.
,
2009
, “
Convective Heat Transfer to CO2 at a Supercritical Pressure Flowing Vertically Upward in Tubes and an Annular Channel
,”
Exp. Therm. Fluid Sci.
,
33
(
2
), pp. 
329
339
. 0894-177710.1016/j.expthermflusci.2008.10.002
14.
Jackson
,
J. D.
,
2002
, “
Consideration of the Heat Transfer Properties of Supercritical Pressure Water in Convection With the Cooling of Advanced Nuclear Reactors
,”
Proceedings of the 13th Pacific Basin Nuclear Conference
,
China Nuclear Society
,
Shenzhen, China
.
15.
Pioro
,
I. L.
, and
Duffey
,
R. B.
,
2007
,
Heat Transfer and Hydraulic Resistance at Supercritical Pressures in Power Engineering Applications
,
ASME Press
,
New York
,
334
pp.
16.
Mokry
,
S.
,
Pioro
,
I.
,
Farah
,
A.
,
King
,
K.
,
Gupta
,
S.
,
Peiman
,
W.
, and
Kirillov
,
P.
,
2011
, “
Development of Supercritical Heat Transfer Correlation for Vertical Bare Tubes
,”
Nucl. Eng. Des.
,
241
(
4
), pp. 
1126
1136
. 0029-549310.1016/j.nucengdes.2010.06.012
17.
Gupta
,
S.
,
Saltanov
,
E.
,
Mokry
,
S.
,
Pioro
,
I.
,
Trevani
,
L.
, and
McGillivray
,
D.
,
2013
, “
Developing Empirical Heat-Transfer Correlations for Supercritical CO2 Flowing in Vertical Bare Tubes
,”
J. Nucl. Eng. Des.
,
261
, pp. 
116
131
.10.1016/j.nucengdes.2013.02.048
18.
Pioro
,
I.
,
2014
, “Application of Supercritical Pressures in Power Engineering: Specifics of Thermophysical Properties and Forced-Convective Heat Transfer,”
Supercritical Fluid Technology for Energy and Environmental Applications
,
V.
Anikeev
,
, and
M.
Fan
, eds.,
Elsevier
,
Netherlands
, pp. 
201
233
.
19.
Pioro
,
I.
, and
Kirillov
,
P.
,
2013
, “Current Status of Electricity Generation in the World,”
Materials and Processes for Energy: Communicating Current Research and Technological Developments
(Energy Book Series, Vol. 1),
A.
Méndez-Vilas
,
, ed.,
Formatex Research Center
,
Spain
, pp. 
783
795
.
20.
Pioro
,
I.
, and
Duffey
,
R.
,
2015
, “
Nuclear Power as a Basis for Future Electricity Generation
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
1
(
1
), pp. 
011001
.10.1115/1.4029420
21.
Peiman
,
W.
,
Pioro
,
I.
, and
Gabriel
,
K.
,
2015
, “
Thermal-Hydraulic and Neutronic Analysis of a Re-Entrant Fuel Channel Design for Pressure-Channel Supercritical Water-Cooled Reactors
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
1
(
2
), pp. 
021008
.10.1115/1.4026393
22.
Dragunov
,
A.
,
Saltanov
,
E.
,
Pioro
,
I.
,
Kirillov
,
P.
, and
Duffey
,
R.
,
2015
, “
Power Cycles of Generation III and III+ Nuclear Power Plants
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
1
(
2
), pp. 
021006
.10.1115/1.4029340
23.
Jouvin
,
J. C.
, and
Pioro
,
I.
,
2015
, “
Heat Transfer Analysis for the Application of SCWR Process Heat for the Thermochemical Production of Hydrogen
,”
Proceedings of the 35th Annual CNS Conference/39th CNS/CNA Student Conference
,
May 31–June 3
,
Canadian Nuclear Society
,
Saint John, NB, Canada
, pp.
5
.
24.
Samuel
,
J.
,
Harvel
,
J.
, and
Pioro
,
I.
,
2015
, “
Investigation of Convection Heat Transfer of Supercritical Water Using ATHLET System Code
,”
Proceedings of the 23rd International Conference On Nuclear Engineering (ICONE-23)
,
May 17–21
,
Japan Society The of Mechanical Engineers (JSME)
,
Chiba, Japan
, Paper No. 1797,
11
 pp.
25.
Ambrosini
,
W.
,
2007
, “
On the Analogies in the Dynamic Behaviour of Heated Channels With Boiling and Supercritical Fluids
,”
Nucl. Eng. Des.
,
237
(
11
), pp. 
1164
1174
. 0029-549310.1016/j.nucengdes.2007.01.006
26.
Sharma
,
M.
,
Pilkhwal
,
D. S.
,
Vijayan
,
P. K.
,
Saha
,
D.
, and
Sinha
,
R. K.
,
2010
, “
Steady State and Linear Stability Analysis of a Supercritical Water Natural Circulation Loop
,
Nucl. Eng. Des.
,
240
(
3
), pp. 
588
597
. 0029-549310.1016/j.nucengdes.2009.10.023
27.
Chatoogoon
,
V.
,
2001
, “
Stability of Supercritical Fluid Flow in a Single-Channel Natural-Convection Loop
,”
Int. J. Heat Mass Trans.
,
44
(
10
), pp. 
1963
1972
.10.1016/S0017-9310(00)00218-0
28.
Jain
,
R.
, and
Corrandini
,
M. L.
,
2006
, “
A Linear Stability Analysis for Natural-Circulation Loops Under Supercritical Conditions
,”
Nucl. Technol.
,
155
(
3
), pp. 
312
323
. 0029-5450
29.
Jain
,
P. K.
, and
Rizwan
,
U.
,
2008
, “
Numerical Analysis of Supercritical Flow Instabilities in a Natural Circulation Loop
,”
Nucl. Eng. Des.
,
238
(
8
), pp. 
1947
1957
. 0029-549310.1016/j.nucengdes.2007.10.034
30.
Lomperski
,
S.
,
Cho
,
D.
,
Jain
,
R.
, and
Corradini
,
M.
,
2004
, “
Stability of a Natural Circulation Loop With a Fluid Heated Through the Thermodynamic Pseudocritical Point
,”
Proceedings of the ICAPP’04
,
June 13–17
,
ANS
,
Pittsburgh, PA
, Paper No. 4268.
31.
Sharabi
,
M. B.
,
Ambrosini
,
W.
, and
He
,
S.
,
2008
, “
Prediction of Unstable Behaviour in a Heated Channel With Water at Supercritical Pressure by CFD Models
,”
Ann. Nucl. Energy
,
35
, pp. 
767
782
. 0306-454910.1016/j.anucene.2007.09.019
32.
Yi
,
T. T.
,
Koshizuka
,
S.
, and
Oka
,
Y.
,
2004
, “
A Linear Stability Analysis of Supercritical Water Reactors, (I) Thermal-Hydraulic Stability
,”
J. Nucl. Sci. Technol.
,
41
(
12
), pp. 
1166
1175
. 0022-313110.1080/18811248.2004.9726345
33.
Ambrosini
,
W.
,
2011
, “
Assessment of Flow Stability Boundaries in a Heated Channel With Different Fluids at Supercritical Pressure
,”
Ann. Nucl. Energy
,
38
(
2–3
), pp. 
615
627
. 0306-454910.1016/j.anucene.2010.09.008
34.
Xi
,
X.
,
Xiao
,
Z.
,
Yan
,
X.
,
Xiong
,
T.
, and
Huang
,
Y.
,
2014
, “
Numerical Simulation of the Flow Instability Between Two Heated Parallel Channels With Supercritical Water
,”
Ann. Nucl. Energy
,
64
(
64
), pp. 
57
66
. 0306-454910.1016/j.anucene.2013.09.017
35.
Su
,
Y.
,
Feng
,
J.
,
Zhao
,
H.
,
Tian
,
W.
,
Su
,
G.
, and
Qiu
,
S.
,
2013
, “
Theoretical Study on the Flow Instability of Supercritical Water in the Parallel Channels
,”
Prog. Nucl. Energy
,
68
, pp. 
169
176
. 0149-197010.1016/j.pnucene.2013.06.005
36.
Xiong
,
T.
,
Yan
,
X.
,
Huang
,
S.
,
Yu
,
J.
, and
Huang
,
Y.
,
2013
, “
Modeling and Analysis of Supercritical Flow Instability in Parallel Channels
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp. 
549
557
. 0017-931010.1016/j.ijheatmasstransfer.2012.08.046
37.
Rohde
,
M.
,
Marcel
,
C. P.
,
Joen
,
T.
,
Class
,
A.
, and
Hagen
,
T.
,
2011
, “
Downscaling a Supercritical Water Loop for Experimental Studies on System Stability
,”
Int. J. Heat Mass Transfer
,
54
(
1–3
), pp. 
65
74
. 0017-931010.1016/j.ijheatmasstransfer.2010.09.063
38.
Swapnalee
,
B. T.
,
Vijayan
,
P. K.
,
Sharma
,
M.
, and
Pilkhwal
,
D. S.
,
2012
, “
Steady State Flow and Static Instability of Supercritical Natural Circulation Loops
,”
J. Nucl. Eng. Design
,
245
(
3
), pp. 
99
112
.10.1016/j.nucengdes.2012.01.002
39.
T’Joen
,
C.
, and
Rohde
,
M.
,
2012
, “
Experimental Study of the Coupled Thermo-Hydraulic-Neutronic Stability of a Natural Circulation HPLWR
,”
J. Nucl. Eng. Des.
,
242
, pp. 
221
232
.10.1016/j.nucengdes.2011.10.055
40.
Chen
,
Y.
,
Zhao
,
M.
,
Yang
,
C.
,
Bi
,
K.
, and
Du
,
K.
,
2012
, “
An Experimental Study of Heat Transfer in Natural Circulation of Supercritical Water
,”
Proceedings of the NUTHOS-9
,
ANS
,
Taiwan
, N9P0049.
41.
Chen
,
Y.
,
Zhao
,
M.
,
Yang
,
C.
,
Bi
,
K.
, and
Du
,
K.
,
2012
, “
An Experiment on Flow and Heat Transfer Characteristics in Natural Circulation of Supercritical Water
,”
3rd China-Canada Joint Workshop on Supercritical Water-Cooled Reactors (CCSC-2012)
,
Xi’an Jiaotong University
,
Xian, China
.
42.
Chen
,
Y.
,
Zhao
,
M.
,
Yang
,
C.
,
Bi
,
K.
, and
Du
,
K.
,
2013
, “
Experiment of Heat Transfer of Supercritical Water in Natural Circulation with Different Diameters of Heated Tubes
,”
6th International Symposium on Supercritical Water-cooled Reactors, ISSCWR6-13097
,
Canadian Nuclear Society
,
Shenzhen, China
.
You do not currently have access to this content.