Acoustic resonance of a fluid-filled tube with closed and open outlet ends for zero and turbulent mean flows is investigated both experimentally and numerically for different wall materials and thicknesses. The main goal is to create a data bank of acoustic wave resonance in fluid-filled tubes at a frequency range of 20–500 Hz to validate and verify numerical prediction models used by the nuclear industry and to determine if there is a better method with existing technology. The experimental results show that there is a strong effect of turbulent flow, wall material, and wall thickness on resonant amplitudes at frequencies above 250  Hz. A numerical investigation is performed solving the linear wave equation with constant and frequency-dependent damping terms and a computational fluid dynamic (CFD) code. Comparing the one-dimensional (1D) and CFD results shows that CFD solution yields better predictions of both resonant frequency and amplitude than the 1D solution without the need for simplified added damping methods, which are required by the 1D methodology. This finding is valid especially for frequencies higher than 300  Hz.

References

1.
Janzen
,
V. P.
,
Fisher
,
N. L.
,
Smith
,
B. A. W.
, and
Taylor
,
C. E.
,
1999
, “
Investigations of Fuel-Bundle Motion and Fretting-Wear in the Chalk River Single-Channel Test-rig
,”
Proceedings of the 6th International Conference on CANDU Fuel
, Vol. 
1
,
Niagara Falls, Canada
,
Sept. 26–30
.
2.
DeBoo
,
G.
,
Ramsden
,
K.
, and
Gesior
,
R.
,
2006
, “
Quad Cities Unit 2 Main Steam Line Acoustic Source Identification and Load Reduction
,”
Proceedings of ICONE14
,
Miami, FL
,
Jul. 17–20
.
3.
Pettigrew
,
M. J.
,
Taylor
,
C. E.
,
Fisher
,
N. J.
,
Yetisir
,
M.
, and
Smith
,
B. A. W.
,
1997
, “
Vibration Analysis and Vibration Damage Assessment in Nuclear and Process Equipment
,”
Proceedings CORENDE: Regional Congress on Non-Destructive and Structural Evaluation
,
Mendoza, Argentina
,
Oct. 27–30
, pp.
127
138
.
4.
Misra
,
A.
,
Pauls
,
R. E.
,
Vijay
,
D. K.
,
Teper
,
W.
,
Lin
,
J.
,
Strzelczyk
,
A.
,
Liu
,
J.
, and
Hemraj
,
R.
,
1994
, “
Acoustic Modelling in Support of Fuel Failure Investigation in a CANDU Nuclear Generating Station
,” American Society of Mechanical Engineers, Pressure Vessels and Piping Division, PVP 279: 99-118.
5.
D’Souza
,
A. F.
, and
Oldenburger
,
R.
,
1964
, “
Dynamic Response of Fluid Lines
,”
J. Fluids Eng.
,
86
(
3
), pp. 
589
598
. 0098-2202
6.
Rzentkowski
,
G.
,
Forest
,
J. W.
, and
Russel
,
J. H.
,
1993
, “
Estimation of Pump-Generated Pressure Pulsations From Instrument Line Measurements
,”
1st International Symposium Pump Noise and Vibrations
,
France
,
July 7–9
.
7.
Chatoorgoon
,
V.
, and
Li
,
Q.
,
2009
, “
A Study of Acoustic Wave Damping in Water-Filled Pipes With Zero Flow and Turbulent Flow
,”
Nucl. Eng. Des.
,
239
(
11
), pp. 
2326
2332
. 0029-549310.1016/j.nucengdes.2009.07.004
8.
Brown
,
F. T.
,
1962
, “
The Transient Response of Fluid Lines
,”
Trans. ASME J. Basic Eng.
,
84
(
4
), pp. 
547
553
.10.1115/1.3658705
9.
Zielke
,
W.
,
1968
, “
Frequency-Dependent Friction in Transient Pipe Flow
,”
J. Basic Eng.
,
90
(
1
), pp. 
109
115
. 0021-922310.1115/1.3605049
10.
Trikha
,
A. K.
,
1975
, “
An Efficient Method for Simulating Frequency-Dependent Friction in Transient Liquid Flow
,”
J. Fluids Eng.
,
97
(
1
), pp. 
97
105
. 0098-220210.1115/1.3447224
11.
Kagawa
,
T.
,
Lee
,
I.
,
Kitagawa
,
A.
, and
Takenaka
,
T.
,
1983
, “
High Speed and Accurate Computing Method of Frequency-Dependent Friction in Laminar Pipe Flow for Characteristics Method
,”
Trans. JSME
,
49
(
447
), pp. 
2638
2644
.10.1299/kikaib.49.2638
12.
Schohl
,
G. A.
,
1993
, “
Improved Approximation for Simulating Frequency-Dependent Friction in Transient Laminar Flow
,”
ASME J. Fluids Eng.
,
115
(
3
), pp. 
420
424
.10.1115/1.2910155
13.
Vardy
,
A. E.
, and
Brown
,
J. M. B.
,
2004
, “
Efficient Approximation of Unsteady Friction Weighting Functions
,”
ASCE J. Hydraul. Eng.
,
130
(
11
), pp. 
1097
1107
.10.1061/(ASCE)0733-9429(2004)130:11(1097)
14.
Vitkovsky
,
J. P.
,
Stephens
,
M. L.
,
Bergant
,
A.
,
Simpson
,
A. R.
, and
Lambert
,
M. F.
,
2004
, “
Efficient and Accurate Calculation of Zielke and Vardy-Brown Unsteady Friction in Pipe Transients
,”
Proceedings of 9th International Conference on Pressure Surges
,
Chester, UK
, pp. 
405
419
.
15.
Urbanowicz
,
K.
, and
Zarzycki
,
Z.
,
2012
, “
New Efficient Approximation of Weighting Functions for Simulations of Unsteady Friction Losses in Liquid Pipe Flow
,”
J. Theor. Appl. Mech.
,
50
(
2
), pp. 
487
508
.
16.
Budny
,
D. D.
,
Wiggert
,
D. C.
, and
Hatfield
,
F. J.
,
1989
, “
Energy Dissipation in Axially-Coupled Model for Transient Flow
,”
Proceedings of 6th International Conference on Pressure Surges
,
Cranfield, UK
,
Oct.
,
BHRA Fluid Engineering
, pp. 
15
26
.
17.
Vardy
,
A. E.
, and
Brown
,
J. M. B.
,
1995
, “
Transient Turbulent, Smooth Pipe Friction
,”
J. Hydraul. Res.
,
33
, pp. 
435
456
. 0022-168610.1080/00221689509498654
18.
Vardy
,
A. E.
, and
Brown
,
J. M. B.
,
2003
, “
Transient Turbulent Friction in Smooth Pipe Flows
,”
J. Sound Vib.
,
259
(
5
), pp. 
1011
1036
0022-460X10.1006/jsvi.2002.5160
19.
Zhao
,
M.
, and
Ghidaoui
,
M.
,
2003
, “
Efficient Quasi-Two-Dimensional Model for Water Hammer Problems
,”
J. Hydraul. Eng.
,
129
(
12
), pp. 
1007
1013
. 0733-942910.1061/(ASCE)0733-9429(2003)129:12(1007)
20.
Zhao
,
M.
, and
Ghidaoui
,
M.
,
2003
, “
Investigation of Turbulence Behavior in Pipe Transient Using a k–ϵ Model
,”
J. Hydraul. Res.
,
44
(
5
), pp. 
682
692
. 0022-168610.1080/00221686.2006.9521717
21.
Riasi
,
A.
,
Nourbakhsh
,
A.
, and
Raisee
,
M.
,
2009
, “
Unsteady Turbulent Pipe Flow due to Water Hammer Using k-ω Turbulence Model
,”
J. Fluids Eng.
,
47
(
4
), pp. 
429
437
.
22.
Bergant
,
A.
,
Simpson
,
A. R.
, and
Vitkovsky
,
J.
,
2001
, “
Developments in Unsteady Pipe Flow Friction Modelling
,”
J. Hydraul. Res.
,
39
(
3
), pp. 
249
257
. 0022-168610.1080/00221680109499828
23.
Bendat
,
J. S.
, and
Piersol
,
A. G.
,
2010
,
Random Data Analysis and Measurement Procedures
, 4th ed.,
Wiley
,
New York
.
24.
Chaudhry
,
M. H.
,
1987
,
Applied Hydraulic Transients
, 3rd ed.,
Van Nostrand Reinhold
,
New York
.
25.
Goodson
,
R. E.
, and
Leonard
,
R. G.
,
1972
, “
A Survey of Modeling Techniques for Fluid Line Transients
,”
ASME J. Basic Eng.
,
94
(
2
), pp. 
474
482
.10.1115/1.3425453
26.
Ohmi
,
M.
, and
Iguchi
,
M.
,
1982
, “
Flow Pattern and Frictional Losses in Pulsating Pipe Flow: Part 7
,”
Bull. JSME
,
24
(
196
), pp. 
1537
1543
. 0021-3764
You do not currently have access to this content.