The paper collects and discusses findings emerging from the analysis of systems operating with fluids at supercritical pressure, with reference to flow stability. In particular, the influence of heating structures and numerical diffusion on the predicted dynamic behavior is highlighted, clarifying that results obtained paying little attention to the presence of these effects should be reconsidered for a better realistic prediction of stability characteristics. Examples of applications in which truncation error and the presence of heating structures play an important role are reported, in order to warn about a tendency to underestimate these effects on the basis of the knowledge of similar phenomena (e.g., in two-phase flow) or system configurations in which they might play a lesser role. The use of a computational fluid dynamics (CFD) code in the analysis of a simple single-tube stability problem shows that models more complex than the usual one-dimensional (1D) ones also show similar effects. The results obtained by 1D numerical tools developed for the analysis of natural circulation with supercritical pressure fluids, equipped with the capability to simulate linear and nonlinear stability with first- and second-order explicit schemes, are then reported. The discussion of the eigenvalues and the eigenvectors calculated for an existing natural circulation loop and a single channel highlight interesting aspects that can be helpful in understanding the results of stability analyses. The CFD code analysis adds additional aspects of interest for the discussion.

References

References
1.
Zuber
,
N.
,
1966
, “
An Analysis of Thermally Induced Flow Oscillation in the Near-Critical and Supercritical Thermal-Dynamic Region
,” ,
General Electric Co.
, New York, NY.
2.
Ambrosini
,
W.
,
2007
, “
On the Analogies in the Dynamic Behaviour of Heated Channels With Boiling and Supercritical Fluids
,”
Nucl. Eng. Des.
,
237
(
11
), pp.
1164
1174
. 0029-549310.1016/j.nucengdes.2007.01.006
3.
Ambrosini
,
W.
, and
Sharabi
,
M.
,
2008
, “
Dimensionless Parameters in Stability Analysis of Heated Channels With Fluids at Supercritical Pressures
,”
Nucl. Eng. Des.
,
238
, pp.
1917
1929
(also published in 2006 at ICONE-14).
4.
Yi
,
T. T.
,
Koshizuka
,
S.
, and
Oka
,
Y.
,
2004
, “
A Linear Stability Analysis of Supercritical Water Reactors, (I) Thermal-Hydraulic Stability
,”
J. Nucl. Sci. Technol.
,
41
, pp.
1166
1175
. 0022-313110.1080/18811248.2004.9726345
5.
Yi
,
T. T.
,
Koshizuka
,
S.
, and
Oka
,
Y.
,
2004
, “
A Linear Stability Analysis of Supercritical Water Reactors, (II) Coupled Neutronic Thermal-Hydraulic Stability
,”
J. Nucl. Sci. Technol.
,
41
,
1176
1186
. 0022-313110.1080/18811248.2004.9726346
6.
Pioro
,
I. L.
, and
Duffey
,
R. B.
,
2007
,
Heat Transfer and Hydraulic Resistance at Supercritical Pressures in Power Engineering Applications
,
ASME Press
,
New York, NY
. ISBN: 0-7918-0252-3.
7.
Oka
,
Y.
,
Koshizuka
,
S.
,
Ishiwatari
,
Y.
, and
Yamaji
,
A.
,
2010
,
Super Light Water Reactors and Super Fast Reactors
,
Springer Science & Business Media
.
8.
Schulenberg
,
T.
, and
Starflinger
,
J.
, Eds.,
2012
,
High Performance Light Water Reactor: Design and Analyses
,
Karlsruhe Institute of Technology Scientific Publishing
.
9.
IAEA
,
2014
, “
Heat Transfer Behaviour and Thermohydraulics Code Testing for Supercritical Water Cooled Reactors (SCWRs)
,”
IAEA-1746, International Atomic Energy Agency
,
Vienna
.
10.
Ambrosini
,
W.
,
2011
, “
Assessment of Flow Stability Boundaries in a Heated Channel With Different Fluids at Supercritical Pressure
,”
Ann. Nucl. Energy
,
38
, pp.
615
627
. 0306-454910.1016/j.anucene.2010.09.008
11.
Sharabi
,
M. B.
,
Ambrosini
,
W.
, and
He
,
S.
,
2008
, “
Prediction of Unstable Behaviour in a Heated Channel With Water at Supercritical Pressure by CFD Models
,”
Ann. Nucl. Energy
,
35
, pp.
767
782
. 0306-454910.1016/j.anucene.2007.09.019
12.
Ampomah-Amoako
,
E.
, and , and
Ambrosini
,
W.
,
2013
, “
Developing a CFD Methodology for the Analysis of Flow Stability in Heated Channels With Fluids at Supercritical Pressures
,”
Ann. Nucl. Energy
,
54
, pp.
251
262
. 0306-454910.1016/j.anucene.2012.11.002
13.
Ampomah-Amoako
,
E.
,
Akaho
,
E. H. K.
,
Nyarko
,
B. J. B.
, and
Ambrosini
,
W.
,
2013
, “
CFD Analysis of the Dynamic Behaviour of a Fuel Rod Subchannel in a Supercritical Water Reactor With Point Kinetics
,”
Ann. Nucl. Energy
,
59
, pp.
211
223
. 0306-454910.1016/j.anucene.2013.04.008
14.
Chatoorgoon
,
V.
,
2001
, “
Stability of Supercritical Fluid Flow in a Single-Channel Natural-Convection Loop
,”
Int. J. Heat Mass Trans.
,
44
, pp.
1963
1972
.10.1016/S0017-9310(00)00218-0
15.
Chatoorgoon
,
V.
,
Voodi
,
A.
, and
Fraser
,
D.
,
2005
, “
The Stability Boundary for Supercritical Flow in Natural Convection Loops, Part I: H2O Studies
,”
Nucl. Eng. Design
,
235
, pp.
2570
2580
. 0029-549310.1016/j.nucengdes.2005.06.003
16.
Chatoorgoon
,
V.
,
Voodi
,
A.
, and
Upadhye
,
P.
,
2005
, “
The Stability Boundary for Supercritical Flow in Natural Convection Loops, Part II: CO2 and H2 Studies
,”
Nucl. Eng. Des.
,
235
, pp.
2581
2593
. 0029-549310.1016/j.nucengdes.2005.06.004
17.
Sharma
,
M.
,
Vijayan
,
P. K.
,
Pilkhwal
,
D. S.
, and
Asako
,
Y.
,
2013
, “
Steady State and Stability Characteristics of Natural Circulation Loops Operating With Carbon Dioxide at Supercritical Pressures for Open and Closed Loop Boundary Conditions
,”
Nucl. Eng. Des.
,
265
, pp.
737
754
. 0029-549310.1016/j.nucengdes.2013.07.023
18.
Sharma
,
M.
,
Vijayan
,
P. K.
,
Pilkhwal
,
D. S.
, and
Asako
,
Y.
,
2014
, “
Natural Convective Flow and Heat Transfer Studies for Supercritical Water in a Rectangular Circulation Loop
,”
Nucl. Eng. Des.
,
273
, pp.
304
320
. 0029-549310.1016/j.nucengdes.2014.04.001
19.
T’Joen
,
C.
, and
Rohde
,
M.
,
2012
, “
Experimental Study of the Coupled Thermo-Hydraulic–Neutronic Stability of a Natural Circulation HPLWR
,”
Nucl. Eng. Des.
,
242
, pp.
221
232
. 0029-549310.1016/j.nucengdes.2011.10.055
20.
Molfese
,
E.
,
Ambrosini
,
W.
,
Forgione
,
N.
,
Vijayan
,
P. K.
, and
Sharma
,
M.
,
2011
, “
Study of Supercritical Carbon Dioxide Natural Circulation by the use of CFD Codes
,”
The 14th International Topical Meeting on Nuclear Reactor Thermalhydraulics, NURETH-14
,
Toronto, ON, Canada
,
Sept. 25–30
.
21.
Debrah
,
S. K.
, ,
Ambrosini
,
W.
, and , and
Chen
,
Y.
,
2013
, “
Assessment of a New Model for the Linear and Nonlinear Stability Analysis of Natural Circulation Loops With Supercritical Fluids
,”
Ann. Nucl. Energy
,
58
, pp.
272
285
. 0306-454910.1016/j.anucene.2013.03.033
22.
Di Buono
,
A.
, and
Ambrosini
,
W.
,
2014
, “
On the Effect of Heating Structures in the Analysis of Flow Stability of Heated Tubes With Supercritical Pressure Fluids
,”
32nd UIT Heat Transfer Conference
,
Pisa
.
23.
Roina
,
G
.,
2015
, “
Analysis of the Effect of Heated Wall Characteristics in Predicting Flow Stability of Water at Supercritical Pressure by CFD Models
,” Tesi di laurea in Ingegneria Nucleare e della Sicurezza e Protezione,
Università di Pisa, Dipartimento di Ingegneria Civile e Industriale, Anno Accademico 2014–2015
, Tutors: W. Ambrosini and A. Pucciarelli.
24.
Ambrosini
,
W.
,
2013
, “
A Model for Linear and Non-Linear Stability Analysis of General Natural Circulation Loops With Supercritical Pressure Fluids
,”
Università di Pisa, Dipartimento di Ingegneria Civile e Industriale
, DICI RL12, Jan. 2013.
25.
Coppedè
,
A.
, and
Ambrosini
,
W.
,
2015
, “
A Low Diffusion Numerical Scheme for the Stability Analysis of Natural Circulation Loops Containing Fluids at Supercritical Pressure
,”
7th International Symposium on Supercritical Water-Cooled Reactors
,
Helsinki, Finlandia
,
Mar. 15–18
.
26.
Carbone
,
F.
,
2015
, “
Simulazione di fenomeni di circolazione naturale con fluidi a pressione supercritica
,” Tesi di Laurea in Ingegneria Energetica, A.A. 2014–2015, (in Italian).
27.
Di Marco
,
P.
,
1989
, “
Sviluppo e convalida di modelli per l’analisi lineare e non lineare di oscillazioni dovute ad onde di densità nei canali bollenti
,” Research Doctorate Thesis in Nuclear Engineering,
Università di Pisa
, Feb. 1989 (in Italian).
28.
Di Marco
,
P.
,
Clausse
,
A.
, and
Lahey
, Jr.,
R. T.
,
1991
, “
An Analysis of Non-Linear Instabilities in Boiling Systems
,”
Dyn. Stab. Syst.
,
6
(
3
). 0268-1110
29.
Ambrosini
,
W.
,
Di Marco
,
P.
, and
Susanek
,
A.
,
1999
, “
Prediction of Boiling Channel Stability by a Finite-Difference Numerical Method
,”
2nd International Symposium on Two-Phase Flow Modelling and Experimentation
,
Pisa, Italy
,
May 23–26
.
30.
Ambrosini
,
W.
,
2010
, “
Notes on the use of Some Dimensionless Numbers in Predicting Heat Transfer Phenomena With Fluids at Supercritical Pressure Università di Pisa
,” , Pisa, Nov. 30.
31.
Ambrosini
,
W.
, and
Ferreri
,
J. C.
,
1998
, “
The Effect of Truncation Error on Numerical Prediction of Stability Boundaries in a Natural Circulation Single-Phase Loop
,”
Nucl. Eng. Des.
,
183
, pp.
53
76
. 0029-549310.1016/S0029-5493(98)00157-5
32.
Ambrosini
,
W.
, and
Ferreri
,
J. C.
,
2003
, “
Prediction of Stability of One-Dimensional Natural Circulation With a Low Diffusion Numerical Scheme
,”
Ann. Nucl. Energy
,
30
(
15
), pp.
1505
1537
. 0306-454910.1016/S0306-4549(03)00119-1
33.
Fluent
,
2006
,
FLUENT 6.3.26 User Guide
.
34.
Warming
,
R. F.
, and
Beam
,
R.M.
,
1976
, “
Upwind Second-Order Difference Schemes and Applications in Unsteady Aerodynamic Flows
,”
AIAA J.
,
14
(
9
), pp.
1241
1249
. 0001-145210.2514/3.61457
35.
Jackson
,
J. D.
,
2002
, “
Consideration of the Heat Transfer Properties of Supercritical Pressure Water in Connection With the Cooling of Advanced Nuclear Reactors
,”
Proceedings of the 13th Pacific Basin Nuclear Conference
,
Shenzhen City, China
,
Oct. 21–25
.
36.
Ambrosini
,
W.
,
Bilbao y León
,
S.
, and
Yamada
,
K.
,
2011
, “
Results of the IAEA Benchmark Exercise on Flow Stability in Heated Channels With Supercritical Fluids
,”
5th International Symposium on Supercritical Water-Cooled Reactors (ISSCWR-5)
,
Vancouver, British Columbia, Canada
,
Mar. 13–16
, p.
P115
.
37.
SCIENTECH Inc.
,
1999
,
RELAP5/Mod3 Code Manual, Volume I: Code Structure, System Models and Solution Methods
,
The Thermal Hydraulics Group
,
Idaho
, June 1999.
38.
Cd-Adapco
,
2014
,
User Guide, STAR-CCM+®, Version 9.06
.
39.
Ambrosini
,
W.
,
2003
, “
Eigenvalues and Eigenvectors in Computational Modelling of One-Dimensional Flow Dynamics
,”
Int. J. Heat Technol.
,
21
(
1
), pp.
3
12
.
You do not currently have access to this content.