The fluoride-salt-cooled high-temperature reactor (FHR) is a new reactor concept, which combines low-pressure liquid salt coolant and high-temperature tristructural isotropic (TRISO) particle fuel. The refractory TRISO particle coating system and the dispersion in graphite matrix enhance safeguards (nuclear proliferation resistance) and security. Compared to the conventional high-temperature reactor (HTR) cooled by helium gas, the liquid salt system features significantly lower pressure, larger volumetric heat capacity, and higher thermal conductivity. The salt coolant enables coupling to a nuclear air-Brayton combined cycle (NACC) that provides base-load and peak-power capabilities. Added peak power is produced using jet fuel or locally produced hydrogen. The FHR is, therefore, considered as an ideal candidate for the transportable reactor concept to provide power to remote sites. In this context, a 20-MW (thermal power) compact core aiming at an 18-month once-through fuel cycle is currently under design at Massachusetts Institute of Technology (MIT). One of the key challenges of the core design is to minimize the reactivity swing induced by fuel depletion, since excessive reactivity will increase the complexity in control rod design and also result in criticality risk during the transportation process. In this study, burnable poison particles (BPPs) made of with natural boron (i.e., 20% content) are adopted as the key measure for fuel cycle optimization. It was found that the overall inventory and the individual size of BPPs are the two most important parameters that determine the evolution path of the multiplication factor over time. The packing fraction (PF) in the fuel compact and the height of active zone are of secondary importance. The neutronic effect of depletion was also quantified. The 18-month once-through fuel cycle is optimized, and the depletion reactivity swing is reduced to 1 beta. The reactivity control system, which consists of six control rods and 12 safety rods, has been implemented in the proposed FHR core configuration. It fully satisfies the design goal of limiting the maximum reactivity worth for single control rod ejection within 0.8 beta and ensuring shutdown margin with the most valuable safety rod fully withdrawn. The core power distribution including the control rod’s effect is also demonstrated in this paper.
Skip Nav Destination
e-mail: kaichao@mit.edu
Article navigation
July 2016
Research Papers
Neutronic Design Features of a Transportable Fluoride-Salt-Cooled High-Temperature Reactor
Kaichao Sun,
e-mail: kaichao@mit.edu
Kaichao Sun
Massachusetts Institute of Technology
, 77 Massachusetts Avenue
, Cambridge, MA 02139
e-mail: kaichao@mit.edu
Search for other works by this author on:
Lin-Wen Hu,
Lin-Wen Hu
Massachusetts Institute of Technology
, 77 Massachusetts Avenue
, Cambridge, MA 02139
Search for other works by this author on:
Charles Forsberg
Charles Forsberg
Massachusetts Institute of Technology
, 77 Massachusetts Avenue
, Cambridge, MA 02139
Search for other works by this author on:
Kaichao Sun
Massachusetts Institute of Technology
, 77 Massachusetts Avenue
, Cambridge, MA 02139
e-mail: kaichao@mit.edu
Lin-Wen Hu
Massachusetts Institute of Technology
, 77 Massachusetts Avenue
, Cambridge, MA 02139
Charles Forsberg
Massachusetts Institute of Technology
, 77 Massachusetts Avenue
, Cambridge, MA 02139
Manuscript received September 1, 2015; final manuscript received February 11, 2016; published online June 17, 2016. Assoc. Editor: Akos Horvath.
ASME J of Nuclear Rad Sci. Jul 2016, 2(3): 031003 (10 pages)
Published Online: June 17, 2016
Article history
Received:
September 1, 2015
Revision Received:
February 11, 2016
Accepted:
February 11, 2016
Citation
Sun, K., Hu, L., and Forsberg, C. (June 17, 2016). "Neutronic Design Features of a Transportable Fluoride-Salt-Cooled High-Temperature Reactor." ASME. ASME J of Nuclear Rad Sci. July 2016; 2(3): 031003. https://doi.org/10.1115/1.4032873
Download citation file:
Get Email Alerts
Operation Optimization Framework for Advanced Reactors Using a Data Driven Digital Twin
ASME J of Nuclear Rad Sci
Investigation of Metal–H2O Systems at Elevated Temperatures: Part III: Solubility Data and New Zr Pourbaix Diagrams at 298.15 K and 373.15 K
ASME J of Nuclear Rad Sci (April 2025)
Investigation of Metal-H2O Systems at Elevated Temperatures: Part II. SnO2(s) Solubility Data and New Sn Pourbaix Diagrams at 298.15 K and 358.15 K
ASME J of Nuclear Rad Sci (April 2025)
Investigation of Metal–H2O Systems at Elevated Temperatures: Part I. Development of a Solubility Apparatus Specialized for Super-Ambient Conditions
ASME J of Nuclear Rad Sci (April 2025)
Related Articles
Validation of the Onsite Used Operational Code Against Burnup Measurement
ASME J of Nuclear Rad Sci (January,2017)
SMR Fuel Cycle Optimization Using LWROpt
ASME J of Nuclear Rad Sci (January,2017)
Combining RAVEN, RELAP5-3D, and PHISICS for Fuel Cycle and Core Design Analysis for New Cladding Criteria
ASME J of Nuclear Rad Sci (April,2017)
A Space–Time-Dependent Study of Control Rods Withdrawal in a Large-Size Pressurized Water Reactor
ASME J of Nuclear Rad Sci (January,2017)
Related Proceedings Papers
Related Chapters
Insights and Results of the Shutdown PSA for a German SWR 69 Type Reactor (PSAM-0028)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
Nuclear Fuel Cycle
Non-Proliferation Nuclear Forensics: Canadian Perspective
Medicine Distribution Security and Quality Monitoring System Based to RFID
International Conference on Advanced Computer Theory and Engineering, 4th (ICACTE 2011)