This study aims to (1) use the thermal hydraulic and severe fuel damage (SFD) best-estimate computer modeling code SOCRAT/V3 for post-test calculation of QUENCH-LOCA-1 experiment and (2) estimate the SOCRAT code quality of modeling. The new QUENCH-LOCA bundle tests with different cladding materials will simulate a representative scenario for a loss-of-coolant-accident (LOCA) nuclear power plant (NPP) accident sequence in which the overheated (up to 1050°C) reactor core would be reflooded from the bottom by the emergency core cooling system (ECCS). The test QUENCH-LOCA-1 was successfully performed at the KIT, Karlsruhe, Germany, on February 2, 2012, and was the first test for this series after the commissioning test QUENCH-LOCA-0 conducted earlier. The SOCRAT/V3-calculated results describing thermal hydraulic, hydrogen generation, and thermomechanical behavior including rods ballooning and burst are in reasonable agreement with the experimental data. The results demonstrate the SOCRAT code’s ability for realistic calculation of complicated LOCA scenarios.

References

References
1.
Stuckert
,
J.
,
Große
,
M.
,
Rössger
,
C.
,
Steinbrück
,
M.
, and
Walter
,
M.
,
2014
, “
Influence of the Temperature History on Secondary Hydriding and Mechanical Properties of Zircaloy-4 Claddings: An Analysis of the QUENCH-LOCA Bundle Tests
,”
Proceedings of International Conference on Nuclear Engineering ICONE22
,
Prague
,
July 7–11
,
American Society of Mechanical Engineers (ASME)
,
New York
, Paper No. ICONE22-30792.
2.
Stuckert
,
J.
,
Große
,
M.
,
Rössger
,
C.
,
Klimenkov
,
M.
,
Steinbrück
,
M.
, and
Walter
,
M.
,
2013
, “
QUENCH-LOCA Program at KIT on Secondary Hydriding and Results of the Commissioning Bundle Test QUENCH L0
,”
Nucl. Eng. Des.
,
255
(
1
), pp. 
185
201
. 0029-549310.1016/j.nucengdes.2012.10.024
3.
Steinbrück
,
M.
,
Große
,
M.
,
Sepold
,
J.
, and
Stuckert
,
J.
,
2010
, “
Synopsis and Outcome of the QUENCH Experimental Program
,”
Nucl. Eng. Des.
,
240
(
7
), pp. 
1714
1727
. 0029-549310.1016/j.nucengdes.2010.03.021
4.
Vasiliev
,
A.
, and
Stuckert
,
J.
,
2013
, “
Application of Thermal Hydraulic and Severe Accident Code SOCRAT/V3 to Bottom Water Reflood Experiment QUENCH-LOCA-0
,”
Nucl. Eng. Des.
,
261
(
1
), pp. 
352
361
. 0029-549310.1016/j.nucengdes.2012.11.021
5.
Kisselev
,
A.
,
Strizhov
,
V.
, and
Vasiliev
,
A.
,
2012
, “
Application of Thermal Hydraulic and Severe Accident Code SOCRAT/V2 to Bottom Water Reflood Experiment PARAMETER-SF4
,”
Nucl. Eng. Des.
,
246
, pp. 
175
184
. 0029-549310.1016/j.nucengdes.2012.01.016
6.
Kobelev
,
G.
,
Strizhov
,
V.
, and
Vasiliev
,
A.
,
2007
, “
Advanced Model of Radiative Heat Transfer in a Rod Geometry
,”
Proceedings of ASME International Mechanical Engineering Congress and Exposition IMECE2007
,
Seattle, WA
,
Nov. 11–15
,
American Society of Mechanical Engineers (ASME)
,
New York
, Paper No. IMECE2007-43375.
7.
Zircar Zirconia, Inc. Manufacturer of High Temperature Insulation,
2004
, www.zircarzirconia.com.
8.
Hofmann
,
P.
, and
Raff
,
S.
,
1981
, “
Verformungsverhalten von Zircaloy-4-Hüllrohren unter Schutzgas im Temperaturbereich zwischen 600 und 1200°C
,” ,
Kernforschungszentrum Karlsruhe
, Karlsruhe, Germany, http://www.cas.phys.unm.edu/rsmith/homepage.html, http://bibliothek.fzk.de/zb/kfk-berichte/KFK3168.pdf.
You do not currently have access to this content.