Accurate calculation of iodine behavior in the containment is very important in determining the potential radioactive release to the environment in light water reactor severe accidents (SAs). Of particular significance is the behavior of gas phase iodine, particularly organic iodine, which is difficult to remove by filtration, e.g., in containment venting systems. Iodine behavior is closely linked with the containment thermal hydraulics, which have a major influence on the distribution of iodine throughout the containment atmosphere and sump. In the European 7th Framework SARNET project, European Commission (EC) cofunded from 2007 to 2013, SA modeling code capability was assessed through two integral benchmarks. In the first, the basis was the German THAI Iod-11/12 tests, where molecular iodine transport with atmospheric flows and iodine interactions with steel surfaces were emphasized. In the second, data from the international Phébus FPT3 test were used, where all aspects of SAs were studied from core degradation, fission product (FP) release, circuit transport/deposition, and containment behavior using realistic FP sources. Thermal hydraulics in the containment were simpler, being well-mixed, and radiolytic interactions of iodine, e.g., with painted surfaces, were studied. These interactions may be an important source of organic iodine in the containment atmosphere. The two benchmarks are thus complementary. In the FPT3 exercise, the calculations could predict the containment thermal hydraulic conditions fairly well. For the more detailed data from THAI, differences were noted for atmospheric flows and relative humidities, outside experimental uncertainties, affecting iodine behavior. The FPT3 iodine results themselves showed a spread in calculated results outside data uncertainties, indicating the need for model improvements in this area, e.g., for radiolytic interaction of iodine with paint. Experimental programs to generate the necessary data needed for code improvement have been recently completed, e.g., in the OECD/THAI, THAI2, BIP, and BIP2 projects, or are in progress, in OECD/STEM and EC/PASSAM. When model improvements have been made, repeat benchmarks are planned to check progress toward code convergence with experimental data, e.g., under the aegis of the new NUGENIA association of which SARNET now forms a part.

References

1.
Van Dorsselaere
,
J.-P.
,
Auvinen
,
A.
,
Beraha
,
D.
,
Chatelard
,
P.
,
Herranz
,
L. E.
,
Journeau
,
C. H.
,
Klein-Heßling
,
W.
,
Kljenak
,
I.
,
Miassoedov
,
A.
,
Paci
,
S.
, and
Zeyen
,
R.
,
2015
, “
Recent Severe Accident Research Synthesis of the Major Outcomes From the SARNET Network
,”
Nucl. Eng. Des.
,
291
, pp.
19
34
.10.1016/j.nucengdes.2015.03.022
2.
Clément
,
B.
,
2007
, “
State of the Art Report on Iodine Chemistry
,”
OECD Nuclear Energy Agency
, Issy-les-Moulineaux, France, .
3.
Weber
,
G.
,
Herranz
,
L. E.
,
Bendiab
,
M.
,
Fontanet
,
J.
,
Funke
,
F.
,
Gonfiotti
,
B.
,
Ivanov
,
I.
,
Krajewski
,
S.
,
Manfredini
,
A.
,
Paci
,
S.
,
Pelzer
,
M.
, and
Sevón
,
T.
,
2013
, “
Thermal-Hydraulic–Iodine Chemistry Coupling: Insights Gained From the SARNET Benchmark on the THAI Experiments Iod-11 and Iod-12
,”
Nucl. Eng. Des.
,
265
, pp.
95
107
.10.1016/j.nucengdes.2013.07.012
4.
Klein-Heßling
,
W.
,
Sonnenkalb
,
M.
,
Jacquemain
,
D.
,
Clément
,
B.
,
Raimond
,
E.
,
Dimmelmeier
,
H.
,
Azarian
,
G.
,
Ducros
,
G.
,
Journeau
,
C.
,
Herranz
,
L. E.
,
Schumm
,
A.
,
Miassoedov
,
A.
,
Kljenak
,
I.
,
Pascal
,
G.
,
Bechta
,
S.
,
Güntay
,
S.
,
Koch
,
M. K.
,
Ivanov
,
I.
,
Auvinen
,
A.
, and
Lindholm
,
I.
,
2014
, “
Conclusions on Severe Accident Research Priorities
,”
Ann. Nucl. Energy
,
74
, pp.
4
11
.10.1016/j.anucene.2014.07.015
5.
Weber
,
G.
,
Funke
,
F.
, and
Poss
,
G.
,
2010
, “
Iodine Transport and Behaviour in Large-Scale THAI Tests
,”
Proceedings of the 4th European Review Meeting on Severe Accident Research (ERMSAR-2010)
,
ENEA
,
Bologna, Italy
.
6.
Payot
,
F.
,
Haste
,
T.
,
Biard
,
B.
,
Bot-Robin
,
F.
,
Devoy
,
J.
,
Garnier
,
Y.
,
Guillot
,
J.
,
Manenc
,
C. H.
, and
March
,
P. H.
,
2011
, “
FPT3 Final Report
,”
IRSN
, St-Paul-lez-Durance, France, .
7.
Bottomley
,
P. D. W.
,
Clément
,
B.
,
Haste
,
T.
,
Jacquemain
,
D.
,
Powers
,
D. A.
,
Schwarz
,
M.
,
Teisseire
,
B.
, and
Zeyen
,
R.
, eds.,
2013
, “
Phébus FP Final Seminar
,”
Ann. Nucl. Energy
,
61
, pp.
1
230
.
8.
Clément
,
B.
, and
Zeyen
,
R.
,
2005
, “
The Phebus Fission Product and Source Term International Programs
,”
Proceedings of the 14th International Conference Nuclear Energy for New Europe
,
Bled, Slovenia
, http://www.nss.si/proc/bled2005/.
9.
Grégoire
,
A.-C.
,
Kalilainen
,
J.
,
Cousin
,
F.
,
Mutelle
,
H.
,
Cantrel
,
L.
,
Auvinen
,
A.
,
Haste
,
T.
, and
Sobanska
,
S.
,
2015
, “
Studies on the Role of Molybdenum on Iodine Transport in the RCS in Nuclear Severe Accident Conditions
,”
Ann. Nucl. Energy
,
78
, pp.
117
129
.10.1016/j.anucene.2014.11.026
10.
Gouello
,
M.
,
Mutelle
,
H.
,
Cousin
,
F.
,
Sobanska
,
S.
, and
Blanquet
,
E.
,
2013
, “
Analysis of the Iodine Gas Phase Produced by Interaction of CsI and MoO3 Vapours in Flowing Steam
,”
Nucl. Eng. Des.
,
263
, pp.
462
472
.10.1016/j.nucengdes.2013.06.016
11.
Simondi-Teisseire
,
B.
,
Girault
,
N.
,
Payot
,
F.
, and
Clément
,
B.
,
2013
, “
Iodine Behaviour in the Containment in Phébus FP Tests
,”
Ann. Nucl. Eng.
,
61
, pp.
157
169
.10.1016/j.anucene.2013.02.039
12.
Haste
,
T.
,
Auvinen
,
A.
,
Cantrel
,
L.
,
Kalilainen
,
J.
,
Kärkelä
,
T.
, and
Simondi-Teisseire
,
B.
,
2012
, “
Progress With Iodine Chemistry Studies in SARNET2
,”
Proceedings of the 21st International Conference Nuclear Energy for New Europe
,
Nuclear Society of Slovenia
,
Ljubljana, Slovenia
.
13.
Di Giuli
,
M.
,
Haste
,
T.
, and
Biehler
,
R.
,
2014
, “
SARNET Benchmark on the Phébus FPT3 Integral Experiment on Core Degradation and Fission Product Behaviour
,”
Proceedings of the 23rd International Conference Nuclear Energy for New Europe
,
Nuclear Society of Slovenia
,
Ljubljana, Slovenia
.
14.
Di Giuli
,
M.
,
Haste
,
T.
, and
Biehler
,
R.
,
2012
, “
Final Comparison Report on the Phébus FPT3 Benchmark
,”
IRSN
, St-Paul-lez-Durance, France, .
15.
Clément
,
B.
, and
Haste
,
T.
,
2003
, “
Comparison Report on International Standard Problem ISP-46 (Phebus FPT1)—Integral Experiment on Reactor Severe Accidents
,”
OECD Nuclear Energy Agency
, Issy-les-Moulineaux, France, .
16.
Bieliauskas
,
A.
, and
Haste
,
T.
,
2011
, “
Specifications of SARNET2 Phébus FPT3 Benchmark
,”
IRSN
, St-Paul-lez-Durance, France, Revision 2, IRSN Internal Document, May.
17.
Haste
,
T.
,
Payot
,
F.
,
Manenc
,
C. H.
,
Clément
,
B.
,
March
,
P. H.
,
Simondi-Teisseire
,
B.
, and
Zeyen
,
R.
,
2012
, “
Study of Boron Behaviour in the Primary Circuit of Water Reactors Under Severe Accident Conditions: A Comparison of Phebus FPT3 Results With Other Recent Integral and Separate-Effects Data
,”
Nucl. Eng. Des.
,
246
, pp.
147
156
.10.1016/j.nucengdes.2011.08.031
18.
Weber
,
G.
,
Herranz
,
L. E.
,
Bendiab
,
M.
,
Fontanet
,
J.
,
Funke
,
F.
,
Gonfiotti
,
B.
,
Ivanov
,
I.
,
Krajewski
,
S.
,
Manfredini
,
A.
,
Paci
,
S.
,
Pelzer
,
M.
, and
Sevón
,
T.
,
2012
, “
SARNET2 WP8 Benchmark on the THAI Iodine Multi-Compartment Tests Iod-11 and Iod-12
,”
GRS Garching
, Germany, SARNET Internal Document SARNET2-ST-D8.4.
19.
Weber
,
G.
,
2012
, “
Specification of the SARNET-2 WP8 THAI Benchmark
,”
GRS Garching
, Germany, SARNET Internal Document SARNET2-ST-D8.2.
20.
Herranz
,
L. E.
,
Haste
,
T.
, and
Kärkelä
,
T.
,
2015
, “
Recent Advances in the Source Term Area Within the SARNET European Severe Accident Research Network
,”
Nucl. Eng. Des.
,
288
, pp.
56
74
.10.1016/j.nucengdes.2015.03.014
21.
Chatelard
,
P.
,
Reinke
,
N.
,
Arndt
,
S.
,
Belon
,
S.
,
Cantrel
,
L.
,
Carenini
,
L.
,
Chevalier-Jabet
,
K.
,
Cousin
,
F.
,
Eckel
,
J.
,
Jacq
,
F.
,
Marchetto
,
C.
,
Mun
,
C.
,
, and
Piar
,
L.
,
2014
, “
ASTEC V2 Severe Accident Integral Code Main Features, Current V2.0 Modelling Status, Perspectives
,”
Nucl. Eng. Des.
,
272
, pp.
119
135
.10.1016/j.nucengdes.2013.06.040
22.
Bosland
,
L.
,
Cantrel
,
L.
,
Girault
,
N.
, and
Clément
,
B.
,
2010
, “
Modelling of Iodine Radiochemistry in the ASTEC Severe Accident Code: Description and Application to FPT-2 PHEBUS Test
,”
Nucl. Technol.
,
171
(
1
), pp.
88
107
.
23.
Allelein
,
H.-J.
,
Arndt
,
S.
,
Klein-Heßling
,
W.
,
Schwarz
,
S.
,
Spengler
,
C.
, and
Weber
,
G.
,
2008
, “
COCOSYS: Status of Development and Validation of the German Containment Code System
,”
Nucl. Eng. Des.
,
238
, pp.
872
889
.10.1016/j.nucengdes.2007.08.006
24.
Weber
,
G.
, and
Funke
,
F.
,
2009
, “
Description of the Iodine Model AIM-3 in COCOSYS
,”
GRS Garching
, Germany, .
25.
Parozzi
,
F.
, and
Paci
,
S.
,
2006
, “
Development and Validation of the ECART Code for the Safety Analysis of Nuclear Installations
,”
14th International Conference on Nuclear Engineering 2006
,
Miami, FL
.
26.
Dickinson
,
S.
, and
Sims
,
H. E.
,
2000
, “
Development of the INSPECT Model for the Prediction of Iodine Volatility From Irradiated Solutions
,”
Nucl. Technol.
,
129
(
3
), pp.
374
386
.
27.
Gauntt
,
R. O.
,
Cash
,
J. E.
,
Cole
,
R. K.
,
Erickson
,
C. M.
,
Humphries
,
L. L.
,
Rodriguez
,
S. B.
, and
Young
,
M. F.
,
2005
, “
MELCOR Computer Code Manuals: Primer and Users’ Guide
,” Vol.
1
,
Sandia National Laboratories
, NUREG/CR-6119, Rev. 3.
28.
Wren
,
J. C.
,
Glowa
,
G. A.
, and
Ball
,
J. M.
,
1999
, “
A Simplified Model for Containment Iodine Chemistry and Transport: Model Description and Validation Using Stainless Steel RTF Test Results
,”
Proceedings of the OECD Workshop on Iodine Aspects of Severe Accident Management
,
Vantaa, Finland
,
OECD Nuclear Energy Agency
,
Issy-les-Moulineaux, France
, OECD/NEA/CSNI/R(99)7.
29.
Kim
,
H.-C.
, and
Cho
,
S.-W.
,
2012
, “
Simulation of Iodine Behavior by Coupling of a Standalone Model With MELCOR
,”
Transactions of the Korean Nuclear Society, Spring Meeting
,
Jeju, Korea
,
Korean Nuclear Society
,
Daejon, Korea
.
30.
Chatelard
,
P.
,
Reinke
,
N.
,
Arndt
,
S.
,
Belon
,
S.
,
Cantrel
,
L.
,
Carenini
,
L.
,
Chevalier-Jabet
,
K.
,
Cousin
,
F.
,
Eckel
,
J.
,
Jacq
,
F.
,
Marchetto
,
C.
,
Mun
,
C.
, and
Piar
,
L.
,
2014
, “
ASTEC V2 Severe Accident Integral Code Main Features, Current V2.0 Modelling Status, Perspectives
,”
Nucl. Eng. Des.
,
272
, pp.
119
135
.10.1016/j.nucengdes.2013.06.040
31.
Weber
,
G.
,
Funke
,
F.
,
Krzykacz-Hausmann
,
B.
, and
Klein-Hessling
,
W.
,
2014
, “
Uncertainty and Sensitivity Analysis on the Iodine Model in the Containment Code COCOSYS
,”
Proceedings of the 10th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Operations and Safety (NUTHOS-10)
,
Okinawa, Japan
, http://www.nuthos10.org.
32.
Austregesilo
,
H.
,
Krzykacz-Hausmann
,
B.
,
Skorek
,
T.
, and
Weber
,
S.
,
2010
, “
Unsicherheits- und Sensitivitätsanalyse von Ergebnissen der Nachrechnung des PHÉBUS Versuchs FPT3 mit ATHLET-CD
,”
The Frame of Project RS 1173 “Validation of the Computer Code System ATHLET/ATHLET-CD,”
GRS Garching
, Germany, .
33.
Chevalier-Jabet
,
K.
,
Cousin
,
F.
,
Cantrel
,
L.
, and
Séropian
,
C.
,
2014
, “
Source Term Assessment With ASTEC and Associated Uncertainty Analysis Using SUNSET Tool
,”
Nucl. Eng. Des.
,
272
, pp.
207
218
.10.1016/j.nucengdes.2013.06.042
You do not currently have access to this content.