This work presents a reduced order model (ROM) aimed at simulating nuclear reactor control rods movement and featuring fast-running prediction of reactivity and neutron flux distribution as well. In particular, the reduced basis (RB) method (built upon a high-fidelity finite element (FE) approximation) has been employed. The neutronics has been modeled according to a parametrized stationary version of the multigroup neutron diffusion equation, which can be formulated as a generalized eigenvalue problem. Within the RB framework, the centroidal Voronoi tessellation is employed as a sampling technique due to the possibility of a hierarchical parameter space exploration, without relying on a “classical” a posteriori error estimation, and saving an important amount of computational time in the offline phase. Here, the proposed ROM is capable of correctly predicting, with respect to the high-fidelity FE approximation, both the reactivity and neutron flux shape. In this way, a computational speedup of at least three orders of magnitude is achieved. If a higher precision is required, the number of employed basis functions (BFs) must be increased.

References

References
1.
Schultz
,
M. A.
,
1961
,
Nuclear Reactor Kinetics and Control
,
McGraw-Hill
,
New York
.
2.
U.S. DOE Nuclear Energy Research Advisory Committee and Generation IV International Forum
,
2002
, “
A Technology Roadmap for Generation IV Nuclear Energy System (GIF-002-00)
,” Dec. 2002.
3.
Xia
,
L.
,
Jiang
,
J.
,
Javidnia
,
H.
, and
Luxat
,
J. C.
,
2012
, “
Performance Evaluation of a 3-D Kinetic Model for CANDU Reactors in a Closed-Loop Environment
,”
Nucl. Eng. Des.
,
243
, pp.
76
86
. 0029-549310.1016/j.nucengdes.2011.11.034
4.
Holmes
,
P.
,
Lumley
,
J.
, and
Berkooz
,
G.
,
1996
,
Turbolence, Coherent Structures, Dynamical Systems and Symmetry
,
Cambridge University Press
,
Cambridge
.
5.
Chatterjee
,
A.
,
2000
, “
An Introduction to the Proper Orthogonal Decomposition
,”
Curr. Sci.
,
78
(
7
), pp.
808
817
. 0011-3891
6.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures. I–III
,”
Q. Appl. Math.
,
45
(
3
), pp.
561
590
. 0033-569X
7.
Rozza
,
G.
,
Huynh
,
D.
, and
Patera
,
A.
,
2008
, “
Reduced Basis Approximation and a Posteriori Error Estimation for Affinely Parametrized Elliptic Coercive Partial Differential Equations
,”
Arch. Comput. Methods Eng.
,
15
(
3
), pp.
1
47
.10.1007/BF03024948
8.
Quarteroni
,
A.
,
Rozza
,
G.
, and
Manzoni
,
A.
,
2011
, “
Certified Reduced Basis Approximation for Parametrized Partial Differential Equations and Applications
,”
J. Math. Ind.
,
1
(
1
), pp.
3
49
.10.1186/2190-5983-1-3
9.
Sartori
,
A.
,
Baroli
,
D.
,
Cammi
,
A.
,
Chiesa
,
D.
,
Luzzi
,
L.
,
Ponciroli
,
R.
,
Previtali
,
E.
,
Ricotti
,
M. E.
,
Rozza
,
G.
, and
Sisti
,
M.
,
2014
, “
Comparison of a Modal Method and a Proper Orthogonal Decomposition Approach for Multi-Group Time-Dependent Reactor Spatial Kinetics
,”
Ann. Nucl. Energy
,
71
, pp.
217
229
. 0306-454910.1016/j.anucene.2014.03.043
10.
Sartori
,
A.
,
Baroli
,
D.
,
Cammi
,
A.
,
Luzzi
,
L.
, and
Rozza
,
G.
,
2014
, “
A Reduced Order Model for Multi-Group Time-Dependent Parametrized Reactor Spatial Kinetics
,”
Proceedings of the 2014 22nd International Conference on Nuclear Engineering (ICONE22)
,
Prague, Czech Republic
, July 7–11, Paper No. 30707.
11.
Duderstadt
,
J. J.
, and
Hamilton
,
L. J.
,
1976
,
Nuclear Reactor Analysis
,
Wiley
,
New York
.
12.
General Atomic
,
1964
,
TRIGA Mark II Reactor General Specifications and Description
, , Mar. 1964,
General Atomic Company
,
USA
.
13.
Ballarin
,
F.
,
Sartori
,
A.
, and
Rozza
,
G.
,
2015
, RBniCS, http://mathlab.sissa.it/rbnics.
14.
Grepl
,
M. A.
, and
Patera
,
A. T.
,
2005
, “
A Posteriori Error Bounds for Reduced-Basis Approximations of Parametrized Parabolic Partial Differential Equations
,”
ESAIM: Math. Modell. Numer. Anal.
,
39
(
1
), pp.
157
181
.10.1051/m2an:2005006
15.
Machiels
,
L.
,
Maday
,
Y.
,
Oliveira
,
I. B.
,
Patera
,
A. T.
, and
Rovas
,
D. V.
,
2000
, “
Output Bounds for Reduced-Basis Approximations of Symmetric Positive Definite Eigenvalue Problems
,”
C. R. Acad. Sci. Ser. I Math.
,
331
(
2
), pp.
153
158
.10.1016/S0764-4442(00)00270-6
16.
Zanon
,
L.
, and
Veroy-Grepl
,
K.
,
2013
, “
The Reduced Basis Method for an Elastic Buckling Problem
,”
PAMM
,
13
(
1
), pp.
439
440
.
17.
Quarteroni
,
A.
, and
Valli
,
A.
,
2008
,
Numerical Approximation of Partial Differential Equations
, Vol. 
23
,
Springer
,
Berlin
.
18.
SERPENT
,
2011
,
PSG2/Serpent Monte Carlo Reactor Physics Burnup Calculation Code
, http://montecarlo.vtt.fi.
19.
Hernandez
,
V.
,
Roman
,
J. E.
, and
Vidal
,
V.
,
2005
, “
SLEPc: A Scalable and Flexible Toolkit for the Solution of Eigenvalue Problems
,”
ACM Trans. Math. Software
,
31
(
3
), pp.
351
362
. 0098-350010.1145/1089014
20.
Balay
,
S.
,
Abhyankar
,
S.
,
Adams
,
M. F.
,
Brown
,
J.
,
Brune
,
P.
,
Buschelman
,
K.
,
Eijkhout
,
V.
,
Gropp
,
W. D.
,
Kaushik
,
D.
,
Knepley
,
M. G.
,
McInnes
,
L. C.
,
Rupp
,
K.
,
Smith
,
B. F.
, and
Zhang
,
H.
,
2014
,
PETSc
, http://www.mcs.anl.gov/petsc.
21.
Jones
,
E.
,
Oliphant
,
T.
,
Peterson
,
P.
, et al,
2001
,
SciPy: Open Source Scientific Tools for Python
, http://www.scipy.org/.
22.
Haasdonk
,
B.
, and
Ohlberger
,
M.
,
2008
, “
Reduced Basis Method for Finite Volume Approximations of Parametrized Linear Evolution Equations
,”
ESAIM: Math. Modell. Numer. Anal.
,
42
(
2
), pp.
277
302
.10.1051/m2an:2008001
23.
Nguyen
,
N. C.
,
Rozza
,
G.
, and
Patera
,
A. T.
,
2009
, “
Reduced Basis Approximation and a Posteriori Error Estimation for the Time-Dependent Viscous Burgers’ Equation
,”
Calcolo
,
46
(
3
), pp.
157
185
.
24.
Prudhomme
,
C.
,
Rovas
,
D. V.
,
Veroy
,
K.
,
Machiels
,
L.
,
Maday
,
Y.
,
Patera
,
A. T.
, and
Turinici
,
G.
,
2002
, “
Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
70
80
. 0098-220210.1115/1.1448332
25.
Du
,
Q.
,
Faber
,
V.
, and
Gunzburger
,
M.
,
1999
, “
Centroidal Voronoi Tessellations: Applications and Algorithms
,”
SIAM Rev.
,
41
(
4
), pp.
637
676
. 0036-144510.1137/S0036144599352836
26.
Burkardt
,
J.
,
Gunzburger
,
M.
, and
Lee
,
H.-C.
,
2006
, “
Centroidal Voronoi Tessellation-Based Reduced-Order Modeling of Complex Systems
,”
SIAM J. Sci. Comput.
,
28
(
2
), pp.
459
484
. 1064-827510.1137/5106482750342221x
27.
Watson
,
D. F.
,
1981
, “
Computing the n-Dimensional Delaunay Tessellation With Application to Voronoi Polytopes
,”
Comput. J.
,
24
(
2
), pp.
167
172
.10.1093/comjnl/24.2.167
28.
Bergmann
,
M.
,
Colin
,
T.
,
Iollo
,
A.
,
Lombardi
,
D.
,
Saut
,
O.
, and
Telib
,
H.
,
2014
, “Reduced Order Models at Work in Aeronautics and Medicine,”
Reduced Order Methods for Modeling and Computational Reduction
(MS&A—Modeling, Simulation and Applications, Vol. 
9
),
A.
Quarteroni
,
, and
G.
Rozza
, eds.,
Springer International Publishing
,
Berlin
, pp.
305
332
.
29.
Volkwein
,
S.
,
1999
,
Proper Orthogonal Decomposition and Singular Value Decomposition
,
Universität Graz/Technische Universität Graz
, SFB F003-Optimierung und Kontrolle.
30.
Lorenzi
,
S.
,
Cammi
,
A.
,
Luzzi
,
L.
, and
Ponciroli
,
R.
,
2015
, “
A Control-Oriented Modeling Approach to Spatial Neutronics Simulation of a Lead-Cooled Fast Reactor
,”
J. Nucl. Eng. Radiat. Sci.
,
1
(
3
), pp.
031007
.10.1115/1.4029791
You do not currently have access to this content.