The temperature dependence of the rate constant (k) of the bimolecular reaction of two hydrated electrons (eaq) measured in alkaline water exhibits an abrupt drop between 150°C and 200°C; above 250°C, it is too small to be measured reliably. Although this result is well established, the applicability of this sudden drop in k(eaq+eaq)) above 150°C to neutral or slightly acidic solution, as recommended by some authors, still remains uncertain. In fact, the recent work suggested that in near-neutral water the abrupt change in k above 150°C does not occur and that k should increase, rather than decrease, at temperatures greater than 150°C with roughly the same Arrhenius dependence of the data below 150°C. In view of this uncertainty of k, Monte Carlo simulations were used in this study to examine the sensitivity of the density dependence of the yield of eaq in the low–linear energy transfer (LET) radiolysis of supercritical water (H2O) at 400°C on variations in the temperature dependence of k. Two different values of the eaq self-reaction rate constant at 400°C were used: one was based on the temperature dependence of k above 150°C as measured in alkaline water (4.2×108  M1s1), and the other was based on an Arrhenius extrapolation of the values below 150°C (2.5×1011  M1s1). In both cases, the density dependences of our calculated eaq yields at 60  ps and 1 ns were found to compare fairly well with the available picosecond pulse radiolysis experimental data (for D2O) for the entire water density range studied (0.150.6  g/cm3). Only a small effect of k on the variation of G(eaq)) as a function of density at 60 ps and 1 ns could be observed. In conclusion, our present calculations did not allow us to unambiguously confirm (or deny) the applicability of the predicted sudden drop of k(eaq+eaq) at 150°C in near-neutral water.

References

1.
Viswanathan
,
R.
,
Armor
,
A. F.
, and
Booras
,
G.
,
2004
, “
A Critical Look at Supercritical Power Plants
,”
Power
,
148
(
3
), pp.
42
49
.
2.
Oka
,
Y.
, and
Koshizuka
,
S.
,
1998
, “
Conceptual Design Study of Advanced Power Reactors
,”
Prog. Nucl. Energy
,
32
(
1
2
), pp.
163
177
.10.1016/S0149-1970(97)00014-0
3.
Khartabil
,
H. F.
,
Duffey
,
R. B.
,
Spinks
,
N.
, and
Diamond
,
W.
,
2005
, “
The Pressure-Tube Concept of Generation IV Supercritical Water-Cooled Reactor (SCWR): Overview and Status
,”
Proceedings of the International Congress on Advances in Nuclear Power Plants
,
Seoul, Korea
,
May 15–19
,
American Nuclear Society
,
La Grange Park, IL
, Vol.
5
, pp.
2824
2830
, Paper No. 5564, ISBN: 978-1-60423-693-4.
4.
Katsumura
,
Y.
,
2004
, “Application of Radiation Chemistry to Nuclear Technology,”
Charged Particle and Photon Interactions with Matter: Chemical, Physical, and Biological Consequences with Applications
,
A.
Mozumder
, and
Y.
Hatano
, eds.,
Marcel Dekker
,
New York
, pp.
697
727
, ISBN: 0-8247-4623-6.
5.
Bartels
,
D. M.
,
Anderson
,
M.
,
Wilson
,
P.
,
Allen
,
T.
, and
Sridharan
,
K.
,
2006
, “
Supercritical Water Radiolysis Chemistry. Supercritical Water Corrosion
,” Available from the Idaho National Laboratory Web site: http://nuclear.inl.gov/deliverables/docs/uwnd_scw_level_ii_sep_2006_v3.pdf.
6.
Růžičková
,
M.
,
Hájek
,
P.
,
Šmida
,
Š.
,
Všolák
,
R.
,
Petr
,
J.
, and
Kysela
,
J.
,
2008
, “
Supercritical Water Loop Design for Corrosion and Water Chemistry Tests under Irradiation
,”
Nucl. Eng. Technol.
,
40
(
2
), pp.
127
132
.10.5516/NET.2008.40.2.127
7.
Guzonas
,
D.
,
Brosseau
,
F.
,
Tremaine
,
P.
,
Meesungnoen
,
J.
, and
Jay-Gerin
,
J.-P.
,
2012
, “
Water Chemistry in a Supercritical Water-Cooled Pressure Tube Reactor
,”
Nucl. Technol.
,
179
(
2
), pp.
205
219
.
8.
Linstrom
,
P. J.
, and
Mallard
,
W. G.
, eds.,
2005
,
NIST Chemistry WebBook, NIST Standard Reference Database No. 69
,
National Institute of Standards and Technology
,
Gaithersburg, MD
, Available at: http://www.webbook.nist.gov.
9.
Guzonas
,
D. A.
, and
Cook
,
W. G.
,
2012
, “
Cycle Chemistry and its Effect on Materials in a Supercritical Water-Cooled Reactor: A Synthesis of Current Understanding
,”
Corros. Sci.
,
65
, pp.
48
66
.10.1016/j.corsci.2012.08.006
10.
Was
,
G. S.
,
Ampornrat
,
P.
,
Gupta
,
G.
,
Teysseyre
,
S.
,
West
,
E. A.
,
Allen
,
T. R.
,
Sridharan
,
K.
,
Tan
,
L.
,
Chen
,
Y.
,
Ren
,
X.
, and
Pister
,
C.
,
2007
, “
Corrosion and Stress Corrosion Cracking in Supercritical Water
,”
J. Nucl. Mater.
,
371
(
1–3
), pp.
176
201
.10.1016/j.jnucmat.2007.05.017
11.
Kanjana
,
K.
,
Haygarth
,
K. S.
,
Wu
,
W.
, and
Bartels
,
D. M.
,
2013
, “
Laboratory Studies in Search of the Critical Hydrogen Concentration
,”
Radiat. Phys. Chem.
,
82
, pp.
25
34
.10.1016/j.radphyschem.2012.09.011
12.
Sanguanmith
,
S.
,
Meesungnoen
,
J.
, and
Jay-Gerin
,
J.-P.
,
2012
, “
Density Dependence of the “Escape” Yield of Hydrated Electrons in the Low-LET Radiolysis of Supercritical Water at 400°C
,”
Phys. Chem. Chem. Phys.
,
14
(
32
), pp.
11277
11280
.10.1039/c2cp41399j
13.
Meesungnoen
,
J.
,
Sanguanmith
,
S.
, and
Jay-Gerin
,
J.-P.
,
2013
, “
Density Dependence of the Yield of Hydrated Electrons in the Low-LET Radiolysis of Supercritical Water at 400°C: Influence of the Geminate Recombination of Subexcitation-Energy Electrons Prior to Thermalization
,”
Phys. Chem. Chem. Phys.
,
15
(
39
), pp.
16450
16455
.10.1039/c3cp52630e
14.
Butarbutar
,
S. L.
,
Meesungnoen
,
J.
,
Guzonas
,
D. A.
,
Stuart
,
C. R.
, and
Jay-Gerin
,
J.-P.
,
2014
, “
Modeling the Radiolysis of Supercritical Water by Fast Neutrons: Density Dependence of the Yields of Primary Species at 400°C
,”
Radiat. Res.
,
182
(
6
), pp.
695
704
.10.1667/RR13715.1
15.
Guzonas
,
D. A.
,
Stuart
,
C. R.
,
Jay-Gerin
,
J.-P.
, and
Meesungnoen
,
J.
,
2010
, “
Testing Requirements for SCWR Radiolysis
,”
Atomic Energy of Canada Limited
, Mississauga, ON, Canada, Report AECL No. 153-127160-REPT-001.
16.
Butarbutar
,
S. L.
,
Muroya
,
Y.
,
Mirsaleh Kohan
,
L.
,
Sanguanmith
,
S.
,
Meesungnoen
,
J.
, and
Jay-Gerin
,
J.-P.
,
2013
, “
On the Temperature Dependence of the Rate Constant of the Bimolecular Reaction of Two Hydrated Electrons
,”
Atom Indonesia
,
39
(
2
), pp.
51
56
.
17.
Christensen
,
H.
, and
Sehested
,
K.
,
1986
, “
The Hydrated Electron and its Reactions at High Temperatures
,”
J. Phys. Chem.
,
90
(
1
), pp.
186
190
.10.1021/j100273a042
18.
Elliot
,
A. J.
,
1994
, “
Rate Constants and g-Values for the Simulation of the Radiolysis of Light Water Over the Range 0–300°C
,” Atomic Energy of Canada Limited, Chalk River, ON, Canada, Report AECL-11073.
19.
Stuart
,
C. R.
,
Ouellette
,
D. C.
, and
Elliot
,
A. J.
,
2002
, “
Pulse Radiolysis Studies of Liquid Heavy Water at Temperatures up to 250°C
,”
Atomic Energy of Canada Limited
, Chalk River, ON, Canada, Report AECL-12107.
20.
Marin
,
T. W.
,
Takahashi
,
K.
,
Jonah
,
C. D.
,
Chemerisov
,
S. D.
, and
Bartels
,
D. M.
,
2007
, “
Recombination of the Hydrated Electron at High Temperature and Pressure in Hydrogenated Alkaline Water
,”
J. Phys. Chem. A
,
111
(
45
), pp.
11540
11551
.10.1021/jp074581r
21.
Ferradini
,
C.
, and
Jay-Gerin
,
J.-P.
,
1993
, “
A Conjecture on the Fate of the Hydrated Electron During Its Disproportionation Reaction
,”
Radiat. Phys. Chem.
,
41
(
3
), pp.
487
490
.10.1016/0969-806X(93)90009-J
22.
Schmidt
,
K. H.
, and
Bartels
,
D. M.
,
1995
, “
Lack of Ionic Strength Effect in the Recombination of Hydrated Electrons: (e−)aq + (e−)aq → 2(OH−) + H2
,”
Chem. Phys.
,
190
(
1
), pp.
145
152
.10.1016/0301-0104(94)00332-5
23.
Swiatla-Wojcik
,
D.
, and
Buxton
,
G. V.
,
1995
, “
Modeling of Radiation Spur Processes in Water at Temperatures up to 300°C
,”
J. Phys. Chem.
,
99
(
29
), pp.
11464
11471
.10.1021/j100029a026
24.
Hervé du Penhoat
,
M.-A.
,
Goulet
,
T.
,
Frongillo
,
Y.
,
Fraser
,
M.-J.
,
Bernat
,
Ph.
, and
Jay-Gerin
,
J.-P.
,
2000
, “
Radiolysis of Liquid Water at Temperatures up to 300°C: A Monte Carlo Simulation Study
,”
J. Phys. Chem. A
,
104
(
50
), pp.
11757
11770
.10.1021/jp001662d
25.
Tippayamontri
,
T.
,
Sanguanmith
,
S.
,
Meesungnoen
,
J.
,
Sunaryo
,
G. R.
, and
Jay-Gerin
,
J.-P.
,
2009
,
Fast Neutron Radiolysis of the Ferrous Sulfate (Fricke) Dosimeter: Monte Carlo Simulations
(Recent Research Developments in Physical Chemistry, Vol.
10
),
S. G.
Pandalai
,
, ed., pp.
Transworld Research Network
,
Trivandrum, India
,
143
211
, Chap. 5, ISBN: 978-81-7895-431-8.
26.
Hatomoto
,
D.
,
Muroya
,
Y.
,
Katsumura
,
Y.
,
Yamashita
,
S.
, and
Kozawa
,
T.
,
2014
, “
Reactivity of Hydrated Electron Formed by Radiolysis of Water at High Temperature
,”
Book of Abstracts, 5th Asia-Pacific Symposium on Radiation Chemistry
,
The University of Tokyo
,
Tokyo, Japan
,
Sept. 8–11
, Paper No. P08, p.
140
.
27.
Elliot
,
A. J.
, and
Bartels
,
D. M.
,
2009
, “
The Reaction Set, Rate Constants and g-Values for the Simulation of the Radiolysis of Light Water over the Range 20 to 350°C Based on Information Available in 2008
,”
Atomic Energy of Canada Limited
, Mississauga, ON, Canada, .
28.
Muroya
,
Y.
,
Sanguanmith
,
S.
,
Meesungnoen
,
J.
,
Lin
,
M.
,
Yan
,
Y.
,
Katsumura
,
Y.
, and
Jay-Gerin
,
J.-P.
,
2012
, “
Time-Dependent Yield of the Hydrated Electron in Subcritical and Supercritical Water Studied by Ultrafast Pulse Radiolysis and Monte Carlo Simulation
,”
Phys. Chem. Chem. Phys.
,
14
(
41
), pp.
14325
14333
.10.1039/c2cp42260c
29.
Muroya
,
Y.
,
Lin
,
M.
,
de Waele
,
V.
,
Hatano
,
Y.
,
Katsumura
,
Y.
, and
Mostafavi
,
M.
,
2010
, “
First Observation of Picosecond Kinetics of Hydrated Electrons in Supercritical Water
,”
J. Phys. Chem. Lett.
,
1
(
1
), pp.
331
335
.10.1021/jz900225a
30.
Meesungnoen
,
J.
,
Guzonas
,
D.
, and
Jay-Gerin
,
J.-P.
,
2010
, “
Radiolysis of Supercritical Water at 400°C and Liquid-Like Densities near 0.5  g/cm3. A Monte Carlo Calculation
,”
Can. J. Chem.
,
88
(
7
), pp.
646
653
.10.1139/V10-055
31.
Sanguanmith
,
S.
,
Muroya
,
Y.
,
Meesungnoen
,
J.
,
Lin
,
M.
,
Katsumura
,
Y.
,
Mirsaleh Kohan
,
L.
,
Guzonas
,
D. A.
,
Stuart
,
C. R.
, and
Jay-Gerin
,
J.-P.
,
2011
, “
Low-Linear Energy Transfer Radiolysis of Liquid Water at Elevated Temperatures up to 350°C: Monte Carlo Simulations
,”
Chem. Phys. Lett.
,
508
(
4–6
), pp.
224
230
.10.1016/j.cplett.2011.04.059
32.
Platzman
,
R. L.
,
1958
, “The Physical and Chemical Basis of Mechanisms in Radiation Biology,”
Radiation Biology and Medicine. Selected Reviews in the Life Sciences
,
W. D.
Claus
,
, ed.,
Addison-Wesley Publishing
,
Reading, MA
, pp.
15
72
.
33.
Pimblott
,
S. M.
,
Pilling
,
M. J.
, and
Green
,
N. J. B.
,
1991
, “
Stochastic Models of Spur Kinetics in Water
,”
Radiat. Phys. Chem.
,
37
(
3
), pp.
377
388
.
34.
Tachiya
,
M.
,
1983
, “
Theory of Diffusion-Controlled Reactions: Formulation of the Bulk Reaction Rate in Terms of the Pair Probability
,”
Radiat. Phys. Chem.
,
21
(
1–2
), pp.
167
175
.10.1016/0146-5724(83)90143-7
35.
Frongillo
,
Y.
,
Goulet
,
T.
,
Fraser
,
M.-J.
,
Cobut
,
V.
,
Patau
,
J. P.
, and
Jay-Gerin
,
J.-P.
,
1998
, “
Monte Carlo Simulation of Fast Electron and Proton Tracks in Liquid Water. II. Nonhomogeneous Chemistry
,”
Radiat. Phys. Chem.
,
51
(
3
), pp.
245
254
.10.1016/S0969-806X(97)00097-2
36.
Meesungnoen
,
J.
, and
Jay-Gerin
,
J.-P.
,
2011
, “Radiation Chemistry of Liquid Water with Heavy Ions: Monte Carlo Simulation Studies,”
Charged Particle and Photon Interactions with Matter: Recent Advances, Applications, and Interfaces
,
Y.
Hatano
,
,
Y.
Katsumura
, and
A.
Mozumder
, eds.,
Taylor & Francis Group
,
Boca Raton, FL
, pp.
355
400
, ISBN: 978-1-4398-1177-1.
37.
Goulet
,
T.
,
Fraser
,
M.-J.
,
Frongillo
,
Y.
, and
Jay-Gerin
,
J.-P.
,
1998
, “
On the Validity of the Independent Reaction Times Approximation for the Description of the Nonhomogeneous Kinetics of Liquid Water Radiolysis
,”
Radiat. Phys. Chem.
,
51
(
1
), pp.
85
91
.10.1016/S0969-806X(97)00060-1
38.
Plante
,
I.
,
2009
, “
Développement de Codes de Simulation Monte-Carlo de la Radiolyse de l’Eau par des Électrons, Ions Lourds, Photons et Neutrons. Applications à Divers Sujets d’Intérêt Expérimental
,” Ph.D. thesis,
Université de Sherbrooke
, Sherbrooke, QC, Canada.
39.
Ghandi
,
K.
, and
Percival
,
P. W.
,
2003
, “
Prediction of Rate Constants for Reactions of the Hydroxyl Radical in Water at High Temperatures and Pressures
,”
J. Phys. Chem. A
,
107
(
17
), pp.
3005
3008
.10.1021/jp027858q
40.
Alcorn
,
C. D.
,
Brodovitch
,
J.-Cl.
,
Percival
,
P. W.
,
Smith
,
M.
, and
Ghandi
,
K.
,
2014
, “
Kinetics of the Reaction between H• and Superheated Water Probed With Muonium
,”
Chem. Phys.
,
435
, pp.
29
39
.10.1016/j.chemphys.2014.02.016
41.
Lin
,
M.
, and
Katsumura
,
Y.
,
2011
, “Radiation Chemistry of High Temperature and Supercritical Water and Alcohols,”
Charged Particle and Photon Interactions with Matter. Recent Advances, Applications, and Interfaces
,
Y.
Hatano
,
,
Y.
Katsumura
, and
A.
Mozumder
, eds.,
Taylor & Francis Group
,
Boca Raton, FL
, pp.
401
424
, ISBN: 978-1-4398-1177-1.
42.
Cline
,
J.
,
Takahashi
,
K.
,
Marin
,
T. W.
,
Jonah
,
C. D.
, and
Bartels
,
D. M.
,
2002
, “
Pulse Radiolysis of Supercritical Water. 1. Reactions between Hydrophobic and Anionic Species
,”
J. Phys. Chem. A
,
106
(
51
), pp.
12260
12269
.10.1021/jp0270250
43.
Lamb
,
W. J.
,
Hoffman
,
G. A.
, and
Jonas
,
J.
,
1981
, “
Self-Diffusion in Compressed Supercritical Water
,”
J. Chem. Phys.
,
74
(
12
), pp.
6875
6880
.10.1063/1.441097
44.
Schmidt
,
K. H.
,
Han
,
P.
, and
Bartels
,
D. M.
,
1995
, “
Radiolytic Yields of the Hydrated Electron from Transient Conductivity: Improved Calculation of the Hydrated Electron Diffusion Coefficient and Analysis of Some Diffusion-Limited (e−)aq Reaction Rates
,”
J. Phys. Chem.
,
99
(
26
), pp.
10530
10539
.10.1021/j100026a016
45.
Bandura
,
A. V.
, and
Lvov
,
S. N.
,
2006
, “
The Ionization Constant of Water over Wide Ranges of Temperature and Density
,”
J. Phys. Chem. Ref. Data
,
35
(
1
), pp.
15
30
.10.1063/1.1928231
46.
Akiya
,
A.
, and
Savage
,
P. E.
,
2002
, “
Roles of Water for Chemical Reactions in High-Temperature Water
,”
Chem. Rev.
,
102
(
8
), pp.
2725
2750
.10.1021/cr000668w
47.
Ohtaki
,
H.
,
Radnai
,
T.
, and
Yamaguchi
,
T.
,
1997
, “
Structure of Water under Subcritical and Supercritical Conditions Studied by Solution X-Ray Diffraction
,”
Chem. Soc. Rev.
,
26
(
1
), pp.
41
51
.10.1039/cs9972600041
48.
Metatla
,
N.
,
Jay-Gerin
,
J.-P.
, and
Soldera
,
A.
,
2011
, “
Molecular Dynamics Simulation of Subcritical and Supercritical Water at Different Densities
,”
Proceedings of the 5th International Symposium on Supercritical-Water-Cooled Reactors
,
Vancouver, BC, Canada
,
Mar. 13–16
,
Canadian Nuclear Society
,
Toronto, ON, Canada
, Paper No. 101, ISBN: 978-1-926773-02-5.
49.
Jay-Gerin
,
J.-P.
,
Lin
,
M.
,
Katsumura
,
Y.
,
He
,
H.
,
Muroya
,
Y.
, and
Meesungnoen
,
J.
,
2008
, “
Effect of Water Density on the Absorption Maximum of Hydrated Electrons in Sub- and Supercritical Water up to 400°C
,”
J. Chem. Phys.
,
129
(
11
), p.
114511
.
50.
Sanguanmith
,
S.
,
Meesungnoen
,
J.
,
Guzonas
,
D. A.
,
Stuart
,
C. R.
, and
Jay-Gerin
,
J.-P.
,
2014
,
Low-LET Radiation Chemistry of Supercritical Water at 400°C: A Re-Analysis of the Water Density Dependence of the Spur Lifetime and the “Escape” e-aq Yield
(Recent Research Development in Physical Chemistry, Vol.
11
),
S. G.
Pandalai
,
, ed.,
Transworld Research Network
,
Trivandrum, India
, pp.
1
14
, Chap. 1, ISBN: 978-81-7895-608-4.
51.
LaVerne
,
J. A.
,
2000
, “
Track Effects of Heavy Ions in Liquid Water
,”
Radiat. Res.
,
153
(
5
), pp.
487
496
.
52.
Bartels
,
D. M.
,
Gosztola
,
D.
, and
Jonah
,
C. D.
,
2001
, “
Spur Decay Kinetics of the Solvated Electron in Heavy Water Radiolysis
,”
J. Phys. Chem. A
,
105
(
34
), pp.
8069
8072
.
53.
Muroya
,
Y.
, “
Measurements of G(eaq−) Using Time-Resolved Picosecond Pulse Radiolysis of Supercritical H2O Conducted at 400 °C at Diverse Water Densities are Currently Being Undertaken at Osaka University and the University of Tokyo in Japan
,” personal communication.
You do not currently have access to this content.