Most supercritical water-cooled reactor (SCWR) concepts being considered as part of the Generation IV initiative are direct cycle. In the event of a fuel defect, the coolant will contact the fuel pellet, potentially releasing fission products and actinides into the coolant and transporting them to the turbines. At the high pressure (25 MPa) in an SCWR, the coolant does not undergo a phase change as it passes through the critical temperature in the core, and nongaseous species may be transported out of the core and deposited on out-of-core components, leading to increased worker dose. It is therefore important to identify species with a high risk of release and develop models of their transport and deposition behavior. This paper presents the results of preliminary leaching tests in SCW of U-Th simulated fuel pellets prepared from natural U and Th containing representative concentrations of the (inactive) oxides of fission products corresponding to a fuel burnup of 60  GWd/ton. The results show that Sr and Ba are released at relatively high concentrations at 400°C and 500°C.

References

References
1.
Guzonas
,
D.
, and
Qiu
,
L.
,
2013
, “
Activity Transport in a Supercritical Water-Cooled Reactor
,”
6th International Symposium on Supercritical Water-Cooled Reactors (ISSCWR-6)
,
Shenzhen, Guangdong, China
, Mar. 3–7, .
2.
IAEA
,
2002
, “
Fuel Failure in Water Reactors: Causes and Mitigation
,”
Proceedings of a Technical Meeting held in Bratislava, Slovakia
, June 17–21,
International Atomic Energy Agency
,
Vienna, Austria
, IAEA-TECDOC-1345.
3.
Locke
,
D. H.
,
1972
, “
The Behaviour of Defective Reactor Fuel
,”
Nucl. Eng. Des.
,
21
(
2
), pp. 
318
330
.10.1016/0029-5493(72)90080-5
4.
Cohen
,
K.
, and
Zebroski
,
E.
,
1959
, “
Operation Sunrise
,”
Nucleonics
,
17
(
3
), pp. 
63
70
.
5.
Hazel
,
V. E.
,
Boyle
,
R. F.
,
Busboom
,
H. J.
,
Murdock
,
T. B.
,
Skarpelos
,
J. M.
, and
Spalaris
,
C. N.
,
1965
, “
Fuel Irradiations in the ESADE-VBWR Nuclear Superheat Loop
,”
Vallecitos Atomic Laboratory
,
San Jose, CA
, .
6.
Murray
,
J. L.
,
1965
, “
EVESR-Nuclear Superheat Fuel Development Project Thirteenth Quarterly Report, June–August 1965
,” .
7.
Busboom
,
H. J.
,
Boyle
,
R. F.
,
Harling
,
G.
, and
Hazel
,
V. E.
,
1966
, “
Post-Irradiation Examination of EVESR Mark III Superheat Fuel (0.008 Inch Cladding Failure)
,” .
8.
Rabin
,
S. A.
,
Atraz
,
B. G.
,
Bader
,
M. B.
,
Busboom
,
H. J.
, and
Hazel
,
V. E.
,
1967
, “
Examination and Evaluation of Rupture in EVESR Superheat Fuel Rod With 0.012-Inch-Thick Incoloy-800 Cladding
,” .
9.
Roof
,
R. R.
,
1966
, “
EVESR-Nuclear Superheat Fuel Development Project, Seventeenth Quarterly Report, June–August 1966
,” .
10.
Yurmanov
,
V. A.
,
Belous
,
V. N.
,
Vasina
,
V. N.
, and
Yurmanov
,
E. V.
,
2010
, “
Chemistry and Corrosion Issues in Supercritical Water Reactors
,”
Proceedings of the Nuclear Plant Chemistry Conference 2010 (NPC 2010)
,
Quebec City, Canada
,
Oct. 3–8
,
Canadian Nuclear Society
,
Toronto
, .
11.
Bergeron
,
A.
, and
Hamilton
,
H.
,
2013
, “
Fabrication and Characterization of Canadian SCWR SIMFUEL
,”
6th International Symposium on Supercritical Water-Cooled Reactors (ISSCWR-6)
,
Shenzhen, Guangdong, China
, Mar. 3–7, .
12.
Qiu
,
L.
, and
Guzonas
,
D. A.
,
2010
, “
An Overview of Corrosion Products Solubilities in Subcritical and Supercritical Water
,”
2nd Canada-China Joint Workshop on Supercritical Water-Cooled Reactors (CCSC-2010)
,
Toronto, ON, Canada
,
Apr. 25–28
,
Canadian Nuclear Society
,
Toronto
.
13.
Qiu
,
L.
,
2014
, “
Solubilities of Fission Products Under Supercritical Water-Cooled Reactor Conditions
,”
2014 Canada-China Conference on Advanced Reactor Development (CCCARD-2014)
,
Niagara Falls, ON, Canada
,
Apr. 27–30
,
Canadian Nuclear Society
,
Toronto
.
14.
Zimmerman
,
G. H.
,
Arcis
,
H.
, and
Tremaine
,
P.
,
2011
, “
Ion-Pair Formation in Strontium Chloride and Strontium Hydroxide Solutions Under Supercritical Water Reactor Operating Conditions
,”
Proceedings of the 5th International Symposium on SCWR (ISSCWR-5)
,
Vancouver, Canada
,
Mar. 13–16
,
Canadian Nuclear Society
,
Toronto
.
15.
Tremaine
,
P.
,
2014
, Personal Communication.
16.
Korzhinskaya
,
V. S.
,
1999
, “
Solubility of Baddeleyite (ZrO2) and Zircon (ZrSiO4) in Aqueous Hydrochloric Solutions at Elevated T and P Parameters
,”
Exp. Geosci.
,
8
(
1
), pp. 
9
18
.
17.
Ryzhenko
,
B. N.
,
Kovalenko
,
N. I.
,
Prisyagina
,
N. I.
,
Starshinova
,
N. P.
, and
Krupskaya
,
V. V.
,
2008
, “
Experimental Determination of Zirconium Speciation in Hydrothermal Solutions
,”
Geochem. Int.
,
46
(
4
), pp. 
328
339
.10.1134/S0016702908040022
18.
Ollila
,
K.
,
2008
, “
Solubility of UO2 in the High pH Range in 0.01 and 0.1 M NaCl Solution Under Reducing Conditions
,” Finland, .
19.
Casas
,
I.
,
Pablo
,
J. D.
,
Gimenez
,
J.
,
Torrero
,
M. E.
,
Bruno
,
J.
,
Cera
,
E.
,
Finch
,
R. J.
, and
Ewing
,
R. C.
,
1998
, “
The Role of pe, pH and Carbonate on the Solubility of UO2 and Uraninite Under Nominally Reducing Conditions
,”
Geochim. Cosmochim. Acta
,
62
(
13
), pp. 
2223
2231
. 0016-703710.1016/S0016-7037(98)00140-9
20.
Rai
,
D.
,
Felmy
,
A. R.
, and
Ryan
,
J. L.
,
1990
, “
Uranium(IV) Hydrolysis Constants and Solubility Product of UO2×H2O(am)
,”
Inorg. Chem.
,
29
(
2
), pp. 
260
264
.10.1021/ic00327a022
21.
Gayer
,
K. H.
, and
Leider
,
H.
,
1957
, “
The Solubility of Uranium(IV) Hydroxide in Solutions of Sodium Hydroxide and Perchloric Acid at 25°C
,”
Can. J. Chem.
,
35
(
1
), pp. 
5
7
.10.1139/v57-002
22.
Bruno
,
J.
,
Casas
,
I.
,
Lagerman
,
B.
, and
Munoz
,
M.
,
1987
, “The Determination of the Solubility of Amorphous UO2(s) and the Mononuclear Hydrolysis Constants of Uranium(IV) at 25°C,”
Scientific Basis for Nuclear Waste Management X
, (Materials Research Society Symposium Proceedings, Vol.
84
),
J. K. Bates
, and
W. B. Seefeldt
, eds.,
Cambridge University Press
,
Cambridge
, pp. 
153
160
.
23.
Neck
,
V.
, and
Kim
,
J. I.
,
2001
, “
Solubility and Hydrolysis of Tetravalent Actinides
,”
Radiochim. Acta
,
89
(
1
), pp. 
1
16
. 0033-823010.1524/ract.2001.89.1.001
24.
Parks
,
G. A.
, and
Pohl
,
D. C.
,
1988
, “
Hydrothermal Solubility of Uraninite
,”
Geochim. Cosmochim. Acta
,
52
(
4
), pp. 
863
875
. 0016-703710.1016/0016-7037(88)90357-2
25.
Guillaumont
,
R.
,
Fanghänel
,
T.
,
Neck
,
V.
,
Fuger
,
J.
,
Palmer
,
D. A.
,
Grenthe
,
I.
, and
Rand
,
M. H.
,
2003
, “Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium, and Technetium,”
Chemical Thermodynamics
, Vol. 
5
,
Nuclear Energy Agency, Organization for Economic Co-operation and Development
,
France
.
26.
Tremaine
,
P. R.
,
Chen
,
J. D.
,
Wallace
,
G. J.
, and
Boivin
,
W. A.
,
1981
, “
Solubility of Uranium (IV) Oxide in Alkaline Aqueous Solutions to 300°C
,”
J. Solution Chem.
,
10
(
3
), pp. 
221
230
.10.1007/BF00653099
27.
Red’kin
,
A. F.
,
Savel’yeva
,
N. I.
,
Sergeyeva
,
E. I.
,
Omel’yaneko
,
B. I.
,
Ivanov
,
I. P.
, and
Khodakovsky
,
I. L.
,
1990
, “
Experimental Study of Uraninite (UO2) Solubility in Hydrothermal Solutions at 300–600°C and P = 1 kbar
,”
Experiment 89: Informative Volume
,
Nauka
,
Moscow
, pp. 
79
81
.
28.
Red’kin
,
A. F.
,
Savelyeva
,
N. I.
,
Sergeyeva
,
E. I.
,
Omel’yanenko
,
B. I.
,
Ivanov
,
I. P.
, and
Khodakovsky
,
I. L.
,
1989
, “
Investigation of Uraninite UO2(c) Solubility Under Hydrothermal Conditions
,”
Sci. Géol. Bull.
,
42
(
4
), pp. 
329
334
.
29.
Sunder
,
S.
,
1999
, “
Corrosion Resistance of (Th,U)O2 Fuel in Water
,”
Proceedings of the 6th International Conference on CANDU Fuel
,
Niagara Falls
, Sept. 26–30,
Canadian Nuclear Society
, Vol. 
1
, pp. 
96
105
.
30.
Rand
,
M.
,
Fuger
,
J.
,
Grenthe
,
I.
,
Neck
,
V.
, and
Rai
,
D.
,
2008
, “Chemical Thermodynamics of Thorium,”
Chemical Thermodynamics
, Vol. 
11
,
OECD Nuclear Energy Agency
,
France
.
31.
Rai
,
D.
,
Moore
,
D. A.
,
Oakes
,
C. S.
, and
Yui
,
M.
,
2000
, “
Thermodynamic Model for the Solubility of Thorium Dioxide in the Na+-Cl−-OH−-H2O System at 23°C and 90°C
,”
Radiochim. Acta
,
88
(
5
), pp. 
297
306
. 0033-8230
You do not currently have access to this content.