Alloy 800HT is one promising candidate for use as a fuel cladding material in supercritical water-cooled rectors. In the present study, specific thermomechanical processing (TMP) was used to study the effects of grain size and grain boundary character distribution (GBCD) on the oxidation behavior of alloy 800HT in supercritical water (SCW). The processed samples were exposed to SCW at 600°C and 25 MPa for 100, 300, and 1000 h. The results showed that grain size and grain boundaries are important factors that affect the oxidation behavior of alloy 800HT in SCW. We also found that TMP improves the adhesion and integrity of the oxide scale.

References

References
1.
Sun
,
C.
,
Hui
,
R.
,
Qu
,
W.
, and
Yick
,
S.
,
2009
, “
Progress in Corrosion Resistant Materials for Supercritical Water Reactors
,”
Corros. Sci.
,
51
(
11
), pp.
2508
2523
. 0010-938X10.1016/j.corsci.2009.07.007
2.
Kritzer
,
P.
,
2004
, “
Corrosion in High-Temperature and Supercritical Water and Aqueous Solutions: A Review
,”
J. Supercrit. Fluids
,
29
(
1–2
), pp.
1
29
.10.1016/S0896-8446(03)00031-7
3.
Zhang
,
L.
,
Bao
,
Y.
, and
Tang
,
R.
,
2012
, “
Selection and Corrosion Evaluation Tests of Candidate SCWR Fuel Cladding Materials
,”
Nucl. Eng. Des.
,
249
, pp.
180
187
. 0029-549310.1016/j.nucengdes.2011.08.086
4.
U.S. DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum
,
2002
, “
A Technology Roadmap for Generation IV Nuclear Energy Systems
,”
U.S. DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum
.
5.
Azevedo
,
C. R. F.
,
2011
, “
Selection of Fuel Cladding Material for Nuclear Fission Reactors
,”
Eng. Fail. Anal.
,
18
(
8
), pp.
1943
1962
. 1350-630710.1016/j.engfailanal.2011.06.010
6.
The OECD Nuclear Energy Agency for the Gen IV International Forum
,
2014
, “
Technology Roadmap Update for Generation IV Nuclear Energy Systems
,”
The OECD Nuclear Energy Agency for the Gen IV International Forum
.
7.
Fulger
,
M.
,
Mihalache
,
M.
,
Ohai
,
D.
,
Fulger
,
S.
, and
Valeca
,
S.C.
,
2011
, “
Analyses of Oxide Films Grown on AISI 304L Stainless Steel and Incoloy 800HT Exposed to Supercritical Water Environment
,”
J. Nucl. Mater.
,
415
(
2
), pp.
147
157
. 0022-311510.1016/j.jnucmat.2011.05.007
8.
Tan
,
L.
,
Allen
,
T.R.
, and
Yang
,
Y.
,
2011
, “
Corrosion Behavior of Alloy 800H (Fe–21Cr–32Ni) in Supercritical Water
,”
Corros. Sci.
,
53
(
2
), pp.
703
711
. 0010-938X10.1016/j.corsci.2010.10.021
9.
Ren
,
W.
, and
Swindeman
,
R.
,
2010
, “
A Review of Alloy 800H for Applications in the Gen IV Nuclear Energy Systems
,”
Proceedings of the ASME Pressure Vessels and Piping Conference 2010
,
Bellevue, Washington
,
ASME
,
Washington, DC
.
10.
Roy
,
A.K.
, and
Virupaksha
,
V.
,
2007
, “
Performance of Alloy 800H for High-Temperature Heat Exchanger Applications
,”
Mater. Sci. Eng. A
,
452–453
, pp.
665
672
.
11.
Was
,
G.S.
,
Ampornrat
,
P.
,
Gupta
,
G.
,
Teysseyre
,
S.
,
West
,
E. A.
,
Allen
,
T.R.
,
Sridharan
,
K.
,
Tan
,
L.
,
Chen
,
Y.
,
Ren
,
X.
, and
Pisterb
,
C.
,
2007
, “
Corrosion and Stress Corrosion Cracking in Supercritical Water
,”
J. Nucl. Mater.
,
371
(
1–3
), pp.
176
201
. 0022-311510.1016/j.jnucmat.2007.05.017
12.
Tan
,
L.
,
Sridharan
,
K.
, and
Allen
,
T. R.
,
2006
, “
The Effect of Grain Boundary Engineering on the Oxidation Behavior of INCOLOY Alloy 800H in Supercritical Water
,”
J. Nucl. Mater.
,
348
(
3
), pp.
263
271
. 0022-311510.1016/j.jnucmat.2005.09.023
13.
Tan
,
L.
,
Ren
,
X.
,
Sridharan
,
K.
, and
Allen
,
T.R.
,
2008
, “
Effect of Shot-Peening on the Oxidation of Alloy 800H Exposed to Supercritical Water and Cyclic Oxidation
,”
Corros. Sci.
,
50
(
7
), pp.
2040
2046
.
14.
Fulger
,
M.
,
Ohai
,
D.
,
Mihalache
,
M.
,
Pantiru
,
M.
, and
Malinovschi
,
V.
,
2009
, “
Oxidation Behavior of Incoloy 800 Under Simulated Supercritical Water Conditions
,”
J. Nucl. Mater.
,
385
(
2
), pp.
288
293
. 0022-311510.1016/j.jnucmat.2008.12.004
15.
Van Nieuwenhove
,
R.
,
Balak
,
J.
,
Toivonen
,
A.
,
Pentiilä
,
S.
, and
Ehrnsten
,
U.
,
2007
, “
Investigation of Coatings, Applied by PVD, for the Corrosion Protection of Materials in Supercritical Water
,”
6th International Symposium on Supercritical Water-Cooled Reactors
,
Shenzhen, China
.
16.
Tan
,
L.
,
Allen
,
T. R.
, and
Busby
,
J. T.
,
2013
, “
Grain Boundary Engineering for Structure Materials of Nuclear Reactors
,”
J. Nucl. Mater.
,
441
(
1–3
), pp.
661
666
. 0022-311510.1016/j.jnucmat.2013.03.050
17.
Humphreys
,
F.J.
, and
Hatherly
,
M.
,
2004
Recrystallization and Related Annealing Phenomena
,
Elsevier
,
Oxford
.
18.
Akhiani
,
H.
,
Nezakat
,
M.
,
Sonboli
,
A.
, and
Szpunar
,
J.
,
2014
, “
The Origin of Annealing Texture in a Cold-Rolled Incoloy 800H/HT After Different Strain Paths
,”
Mater. Sci. Eng. A.
,
619
, pp.
334
344
.10.1016/j.msea.2014.09.093
19.
Akhiani
,
H.
,
Nezakat
,
M.
, and
Szpunar
,
J.A.
,
2014
, “
Evolution of Deformation and Annealing Textures in Incoloy 800H/HT via Different Rolling Paths and Strains
,”
Mater. Sci. Eng. A.
,
614
, pp.
250
263
.10.1016/j.msea.2014.07.035
20.
Penttilä
,
S.
,
Toivonen
,
A.
,
Li
,
J.
,
Zheng
,
W.
, and
Novotny
,
R.
,
2013
, “
Effect of Surface Modification on the Corrosion Resistance of Austenitic Stainless Steel 316L in Supercritical Water Conditions
,”
J. Supercrit. Fluids
,
81
, pp.
157
163
.10.1016/j.supflu.2013.05.002
21.
Mahboubi
,
S.
,
Button
,
G.A.
, and
Kish
,
J.
,
2014
, “
Oxide Scales Formed on Austinitic Fe-Cr-Ni Alloys Exposed to Supercritical Water: Role of Alloying Elements
,”
19th Pacific Basin Nuclear Conference
,
Vancouver
.
22.
Akhiani
,
H.
,
Nezakat
,
M.
,
Penttilä
,
S.
, and
Szpunar
,
J.
,
2015
, “
The Oxidation Resistance of Thermo-Mechanically Processed Incoloy 800HT in Supercritical Water
,”
J. Supercrit. Fluids
,
101
, pp.
150
160
.10.1016/j.supflu.2015.03.019
23.
Litz
,
J.
,
Rahmel
,
A.
, and
Schorr
,
M.
,
1988
, “
Selective Carbide Oxidation and Internal Nitridation of the Ni-Base Superalloys IN 738 LC and IN 939 in Air
,”
Oxid. Met.
,
30
(
1–2
), pp.
95
105
. 0030-770X10.1007/BF00656646
24.
Tan
,
L.
,
Rakotojaona
,
L.
,
Allen
,
T.R.
,
Nanstad
,
R.K.
, and
Busby
,
J.T.
,
2011
, “
Microstructure Optimization of Austenitic Alloy 800H (Fe–21Cr–32Ni)
,”
Mater. Sci. Eng. A
,
528
(
6
), pp.
2755
2761
.10.1016/j.msea.2010.12.052
25.
Special Metals Corporation
,
INCOLOY alloy 800H & 800HT
,
2004
, www.specialmetals.com.
26.
Birks
,
N.
,
Meier
,
G. H.
, and
Pettit
,
F.S.
,
2006
,
High-Temperature Oxidation of Metals
,
2nd ed.
,
Cambridge University Press
,
New York
.
27.
Krupp
,
U.
, and
Christ
,
H.
,
2000
, “
Selective Oxidation and Internal Nitridation During High-Temperature Exposure of Single-Crystalline Nickel-Base Superalloys
,”
Metall. Mater. Trans. A
,
31
(
1
), pp.
47
56
.10.1007/s11661-000-0051-0
28.
Durham
,
R.N.
,
Gleeson
,
B.
, and
Young
,
D. J.
,
1998
, “
Factors Affecting Chromium Carbide Precipitate Dissolution During Alloy Oxidation
,”
Oxid. Met.
,
50
(
1–2
), pp.
139
165
. 0030-770X
29.
Ostwald
,
C.
, and
Grabke
,
H. J.
,
2004
, “
Initial Oxidation and Chromium Diffusion. I. Effects of Surface Working on 9–20% Cr Steels
,”
Corros. Sci.
,
46
(
5
), pp.
1113
1127
. 0010-938X10.1016/j.corsci.2003.09.004
30.
Favergeon
,
J.
,
Valot
,
C.
,
Montesin
,
T.
, and
Bertrand
,
G.
,
2002
, “
Texture Effects on Zircaloy Oxidation: Experiment and Simulation
,”
Mater. Sci. Forum.
,
408–412
, pp.
999
1006
.10.4028/www.scientific.net/MSF.408-412
31.
Berthod
,
P.
,
2007
, “
Influence of Chromium Carbides on the High Temperature Oxidation Behavior and on Chromium Diffusion in Nickel-Base Alloys
,”
Oxid. Met.
,
68
(
1–2
), pp.
77
96
. 0030-770X10.1007/s11085-007-9062-1
32.
Chu
,
W.F.
, and
Rahmel
,
A.
,
1980
, “
The Conversion of Chromium Oxide to Chromium Carbide Cr2O3
,”
Oxid. Met.
,
15
(
3–4
), pp.
331
337
. 0030-770X10.1007/BF01058833
33.
Akhiani
,
H.
,
Nezakat
,
M.
,
Sanayei
,
M.
, and
Szpunar
,
J.
,
2015
, “
The Effect of Thermo-Mechanical Processing on Grain Boundary Character Distribution in Incoloy 800H/HT
,”
Mater. Sci. Eng. A.
,
626
, pp.
51
60
.10.1016/j.msea.2014.12.046
34.
Thomson
,
C.B.
, and
Randle
,
V.
,
1997
, “
The Effects of Strain Annealing on Grain Boundaries and Secure Triple Junctions in Nickel 200
,”
J. Mater. Sci.
,
32
(
7
), pp.
1909
1914
. 0022-246110.1023/A:1018573327408
You do not currently have access to this content.