For more than 50 years, a thin (3–20 μm) graphite coating has played an important role in limiting the stress corrosion cracking (SCC) of Zircaloy-4 fuel sheathing in CANDU® nuclear reactors. Siloxane coatings, which were examined alongside graphite coatings in the early 1970s, demonstrated even better tolerance against power-ramp-induced SCC and exhibited better wear resistance than graphite coatings. Although siloxane technology developed significantly in the 1980s/1990s, siloxane coatings remain unused in CANDU reactors, because graphite is relatively inexpensive and performs well in-service. However, advanced CANDU designs will accommodate average burnups, exceeding the threshold tolerable by the graphite coating (450  MWh/kgHE). In addition, siloxane coatings may find applicability in pressurized and boiling water reactors, wherein the burnups are inherently larger than those in CANDU reactors. Consequently, a commercially available siloxane coating is evaluated by its present-day chemistry, wear resistance, and performance in hot, stressful, and corrosive environments. After subjecting slotted Zircaloy-4 rings to iodine concentrations exceeding the estimated in-reactor concentration (1  mg/cm3), mechanical deflection tests and scanning electron microscopy (SEM) show that the siloxane coating outperforms the graphite coating in preserving the mechanical integrity of the rings. Furthermore, the baked siloxane coating survived a 50-day exposure to thermal neutron flux ((2.5±0.1)×1011  n/cm2s) in the SLOWPOKE-2 nuclear reactor at the Royal Military College of Canada.

References

References
1.
Robertson
,
J. A. L.
,
1973
, “
Improved Performance for UO2 Fuel
,”
Atomic Energy of Canada Limited
, Chalk River, Canada, Report No. AECL-4366.
2.
Robertson
,
J. A. L.
,
1996
, “
Learning From History: A Case Study in Nuclear Fuel
,”
Zirconium in the Nuclear Industry—11th International Symposium
,
E. R. Bradley
, and
G. P. Sabol
, eds.,
ASTM International
,
West Conshohocken, PA
, pp. 
3
11
.
3.
Uffelen
,
P. V.
,
Konings
,
R. J. M.
,
Vitanza
,
C.
, and
Tulenko
,
J.
,
2010
, “Analysis of Reactor Fuel Rod Behavior,”
Handbook of Nuclear Engineering
,
P. D. G. Cacuci
, ed.,
Springer US
,
New York
, pp. 
1519
1627
.
4.
Bain
,
A. S.
,
Wood
,
J. C.
, and
Coleman
,
C. E.
,
1973
, “
Fuel Designs to Eliminate Defects on Power Increases
,”
Proceedings of the International Conference on Nuclear Fuel Performance
,
Institution of Civil Engineers, London
,
Oct. 15–19
,
British Nuclear Energy Society
,
London
.
5.
Suk
,
E.
, and
Manzer
,
A.
,
2006
, “
Canadian CANDU Fuel Performance
,”
IAEA Workshop on CANDU Fuel Defect Investigation and Fuel Performance
,
China
,
International Atomic Energy Agency
,
Vienna, Austria
.
6.
Manzer
,
A.
,
1996
, “
CANDU Fuel Performance
,”
IAEA Technical Committee Meeting on Water Reactor Fuel & Fuel Channel, Design Performance Research & Development
,
International Atomic Energy Agency
,
Vienna, Austria
.
7.
Fehrenbach
,
P. J.
, and
Miller
,
A. I.
,
2009
, “HWR Fuel Cycles,”
Nuclear Engineering Handbook
,
K. Kok
, ed.,
CRC Press
,
Boca Raton, FL
, pp. 
475
521
.
8.
Wood
,
J. C.
,
1972
, “
Factors Affecting Stress Corrosion Cracking of Zircaloy in Iodine Vapour
,”
J. Nucl. Mater.
,
45
(
2
), pp. 
105
122
. 0022-311510.1016/0022-3115(72)90178-X
9.
Chan
,
P. K.-H.
,
1998
, “
Protective Coating to Reduce Stress Corrosion Cracking in Zirconium Alloy Sheathing
,” Patent No. US5805655 A.
10.
Besmann
,
T. M.
, and
Lindemer
,
T. B.
,
1978
, “
Chemical Thermodynamics of the System Cs-U-Zr-H-I-O in the Light Water Reactor Fuel-Cladding Gap
,”
Nucl. Technol.
,
40
(
3
), pp. 
297
305
.
11.
Wood
,
J. C.
,
Surette
,
B. A.
,
Aitchison
,
I.
, and
Clendening
,
W. R.
,
1980
, “
Pellet Cladding Interaction—Evaluation of Lubrication by Graphite
,”
J. Nucl. Mater.
,
88
(
1
), pp. 
81
94
. 0022-311510.1016/0022-3115(80)90388-8
12.
Rolstad
,
E.
,
1975
, “
A Mechanical Explanation to the Overpower Failures
,”
Nucl. Technol.
,
25
(
1
), pp. 
7
12
.
13.
Chan
,
P. K.
,
Irving
,
K. G.
, and
Mitchell
,
J. R.
,
1992
, “
The Role of ZrxIyC Compounds in Minimizing Stress Corrosion Cracking in Fuel Cladding
,”
3rd International Conference on CANDU Fuel
,
Pembroke, Canada
,
Canadian Nuclear Society
,
Toronto, Canada
.
14.
Chan
,
P. K.
, and
Kaddatz
,
K.
,
1994
, “
How Does CANLUB Work?
,”
15th Annual Conference of the CNA/CNS
,
Montreal, Canada
,
Canadian Nuclear Society
,
Toronto, Canada
.
15.
Chan
,
P. K.
,
Franklin
,
K.
,
Guzonas
,
D. A.
,
Halliday
,
J.
, and
Kaddatz
,
K. J. W.
,
1995
, “
The Active ‘Ingredient’ in CANLUB
,”
4th Annual Conference on CANDU Fuel
,
Pembroke, Canada
,
Canadian Nuclear Society
,
Toronto, Canada
.
16.
Lewis
,
B. J.
,
Thompson
,
W. T.
,
Kleczek
,
M. R.
,
Shaheen
,
K.
,
Juhas
,
M.
, and
Iglesias
,
F. C.
,
2011
, “
Modelling of Iodine-Induced Stress Corrosion Cracking in CANDU Fuel
,”
J. Nucl. Mater.
,
408
(
3
), pp. 
209
223
. 0022-311510.1016/j.jnucmat.2010.10.063
17.
Metzler
,
J.
,
Ferrier
,
G. A.
,
Farahani
,
M.
,
Chan
,
P. K.
, and
Corcoran
,
E. C.
,
2015
, “
Influence of Alkali Metal Oxides and Alkaline Earth Metal Oxides on the Mitigation of Stress Corrosion Cracking in CANDU Fuel Sheathing
,”
35th Annual CNS Conference
,
St. John, Canada
.
18.
Wood
,
J. C.
,
Bain
,
A. S.
, and
Hardy
,
D. G.
,
1979
, “
Mechanistic Studies of Power Ramping Defects
,”
ANS Topical Meeting on Light Water Reactor Fuel Performance
,
Portland, OR
,
American Nuclear Society
,
La Grange Park
.
19.
Wood
,
J. C.
,
Hardy
,
D. G.
, and
Bain
,
A. S.
,
1979
, “
Improved CANDU Fuel Performance—A Summary of Previous AECL Publications
,”
Specialists’ Meeting on Power Ramping and Power Cycling of Water Reactor Fuel and its Significance to Fuel Behaviour
,
Arles, France
,
International Atomic Energy Agency
,
Vienna, Austria
, pp. 
79
83
.
20.
Floyd
,
M. R.
,
Novak
,
J.
, and
Truant
,
P. T.
,
1992
, “
Fission-Gas Release in Fuel Performing to Extended Burnups in Ontario Hydro Nuclear Generating Stations
,”
IAEA Technical Committee Meeting on Fission Gas Release and Fuel Rod Chemistry Related to Extended Burnup
,
Pembroke, Canada
,
International Atomic Energy Agency
,
Vienna, Austria
, pp. 
53
59
.
21.
Popov
,
N.
,
Ion
,
R.
,
Yu
,
S.
, and
Duffey
,
R.
,
2008
, “
ACR-1000: Advanced CANDU Based on Proven Safety of CANDU Reactors
,”
Transactions of the International Topical Meeting on Safety of Nuclear Installations (TOPSAFE 2008)
,
European Nuclear Society
,
Brussels, Belgium
.
22.
Marques
,
J. G.
,
2011
, “Review of Generation-III/III+ Fission Reactors,”
Nuclear Energy Encyclopedia
,
S. B. Krivit
,
J. H. Lehr
, and
T. B. Kingery
, eds.,
Wiley
,
New York
, pp. 
231
254
.
23.
Carter
,
J. T.
,
Jones
,
R. H.
, and
Luptak
,
A. J.
,
2011
,
US Radioactive Waste Inventory and Characteristics Related to Potential Future Nuclear Energy Systems
,
US Department of Energy
,
Washington, DC
.
24.
Inoue
,
K.
,
Suzuki
,
K.
,
Maki
,
H.
,
Yasuda
,
T.
,
Oi
,
N.
,
Hayashi
,
Y.
,
Wakashima
,
K.
,
Ogata
,
S.
,
Junkrans
,
G.
,
Vesterlund
,
G.
,
Lysell
,
G.
, and
Ronnberg
,
G.
,
1985
, “An Overview of the Joint Development Work on PCI Remedy Fuel,”
Light Water Reactor Fuel Performance
,
Orlando, FL
,
American Nuclear Society
,
La Grange Park
.
25.
Mowrer
,
N. R.
,
2003
,
Polysiloxane Coatings Innovations
,
Ameron International
,
Brea, CA
.
26.
Liles
,
D. T.
,
2012
, “
The Fascinating World of Silicones and Their Impact on Coatings
,”
Proceedings of the 39th Annual International Waterborne, High-Solids, and Powder Coatings Symposium
,
DEStech Publications, Inc.
,
New Orleans, LA
, pp. 
44
79
.
27.
Finzel
,
W. A.
, and
Vincent
,
H. L.
,
1996
, “Silicones in Coatings,”
Federation Series on Coatings
,
Federation of Societies for Coatings Technology
,
Blue Bell, PA
, p. 
9
.
28.
Farahani
,
M.
,
Ferrier
,
G. A.
,
Chan
,
P. K.
,
Pant
,
A.
, and
Corcoran
,
E. C.
,
2013
, “
Beyond CANLUB-Graphite: An Improved Alternative Coating Development
,”
12th International Conference on CANDU Fuel
,
Kingston, Canada
,
Canadian Nuclear Society
,
Toronto, Canada
.
29.
Prudil
,
A.
,
Lewis
,
B. J.
,
Chan
,
P. K.
, and
Baschuk
,
J. J.
,
2015
, “
Development and Testing of the FAST Fuel Performance Code: Normal Operating Conditions (Part 1)
,”
Nucl. Eng. Des.
,
282
, pp. 
158
168
. 0029-549310.1016/j.nucengdes.2014.09.036
30.
Kleczek
,
M. R.
,
2010
, “
Thermodynamic and Kinetic Modelling of Iodine Induced Stress Corrosion Cracking in Nuclear Fuel Sheathing
,” M.A.Sc. thesis,
Royal Military College of Canada
.
31.
Bale
,
C. W.
,
Chartrand
,
P.
,
Degterov
,
S. A.
,
Eriksson
,
G.
,
Hack
,
K.
,
Ben Mahfoud
,
R.
,
Melancon
,
J.
,
Pelton
,
A. D.
, and
Petersen
,
S.
,
2002
, “
Fact Sage Thermochemical Software and Databases
,”
Calphad
,
26
(
2
), pp. 
189
228
. 0364-591610.1016/S0364-5916(02)00035-4
32.
Corcoran
,
E. C.
,
Piro
,
M. H.
,
Kaye
,
M. H.
,
Higgs
,
J. D.
,
Thompson
,
D. M.
,
Akbari
,
F.
,
Lewis
,
B. J.
, and
Thompson
,
W. T.
,
2010
, “Chapter 42: Website Appendix,”
Comprehensive Nuclear Materials
,
Elsevier
,
Amsterdam
.
33.
Method 3051A
,
2007
, “
Microwave Assisted Digestion of Sediments, Sludges, Soils and Oils
,”
U.S. Environmental Protection Agency
.
34.
Chan
,
P. K.
,
Paquette
,
S.
,
Bonin
,
H. W.
,
French
,
C.
, and
Pant
,
A.
,
2013
, “
Neutron Absorbers in CANDU Natural Uranium Fuel Bundles to Improve Operating Margins
,”
21st International Conference on Nuclear Engineering (ICONE21)
,
Chengdu, China
,
American Society of Mechanical Engineers (ASME)
,
New York
.
35.
Chan
,
P. K.
,
Paquette
,
S.
, and
Bonin
,
H. W.
,
2015
, “
Variation of Burnable Neutron Absorbers in Heavy Water-Moderated Fuel Lattice: A Potential to Improve CANDU Reactor Operating Margins
,”
Nucl. Technol.
,
191
(
1
), pp. 
1
14
.
36.
Hastings
,
I. J.
,
Tayal
,
M.
, and
Manzer
,
A. M.
,
1990
, “
CANDU Fuel Performance in Load-Following Operation
,”
Atomic Energy of Canada Limited
, Chalk River, Canada, Report No. AECL-9812.
37.
Sidky
,
P. S.
,
1998
, “
Iodine Stress Corrosion Cracking of Zircaloy Reactor Cladding: Iodine Chemistry (A Review)
,”
J. Nucl. Mater.
,
256
(
1
), pp. 
1
17
. 0022-311510.1016/S0022-3115(98)00044-0
38.
Quastel
,
A. D.
,
Corcoran
,
E. C.
, and
Lewis
,
B. J.
,
2013
, “
The Effect of Oxidized UO2 on Iodine Induced Stress Corrosion Cracking of Fuel Sheathing
,”
12th International Conference on CANDU Fuel
,
Kingston, Canada
,
Canadian Nuclear Society
,
Toronto, Canada
.
39.
Blake
,
A.
,
1989
,
Practical Stress Analysis in Engineering Design
,
CRC Press
,
New York
.
40.
Rosinger
,
H. E.
, and
Northwood
,
D. O.
,
1979
, “
The Elastic Properties of Zirconium Alloy Fuel Cladding and Pressure Tubing Materials
,”
J. Nucl. Mater.
,
79
(
1
), pp. 
170
179
. 0022-311510.1016/0022-3115(79)90444-6
41.
Waheed
,
A.
,
Palleck
,
S.
,
Chakraborthy
,
K.
, and
Roth
,
M.
,
2008
, “
Fatigue Tests on CANDU Fuel, Zircaloy-4 Tubes for AECL Load Following Program-Romania
,”
10th CNS International Conference on CANDU Fuel
,
Ottawa, Canada
,
Canadian Nuclear Society
,
Toronto, Canada
.
42.
Sejnoha
,
R.
, and
Wood
,
J. C.
,
1979
, “Iodine-Induced Stress Corrosion Cracking of Fixed Deflection Stressed Slotted Rings of Zircaloy Fuel Cladding,”
Zirconium in the Nuclear Industry
,
J. H. Schemel
, and
T. P. Papazoglou
, eds.,
ASTM International
,
West Conshohocken, PA
, pp. 
261
284
.
43.
Floyd
,
M. R.
,
2001
, “
Extended-Burnup CANDU Fuel Performance
,”
7th International CNS CANDU Fuel Conference
,
Kingston, Canada
,
Canadian Nuclear Society
,
Toronto, Canada
, pp. 
5A-1
5A-20
.
44.
Barker
,
B.
,
2013
, “
The Quest for Accident Tolerant Fuels
,”
EPRI J.
, (
Winter 2013
), pp. 
6
9
.
45.
Wise
,
M. E.
, and
Kay
,
R. E.
,
1983
,
Description and Safety Analysis for the SLOWPOKE-2 Reactor
,
Atomic Energy of Canada Limited
,
Ottawa, Canada
.
You do not currently have access to this content.