The onset of nucleate boiling (ONB) serves as the thermal-hydraulic operating limit for many research and test reactors. However, boiling incipience under forced convection has not been well-characterized in narrow channel geometries or for oxidized surface conditions. This study presents experimental data for the ONB in vertical upflow of deionized (DI) water in a simulated materials test reactor (MTR) coolant channel. The channel gap thickness and aspect ratio were 1.96 mm and 291, respectively. Boiling surface conditions were carefully controlled and characterized, with both heavily oxidized and native oxide surfaces tested. Measurements were performed for mass fluxes ranging from 750 to 3000  kg/m2s and for subcoolings ranging from 10 to 45°C. ONB was identified using a combination of high-speed visual observation, surface temperature measurements, and channel pressure drop measurements. Surface temperature measurements were found to be most reliable in identifying the ONB. For the nominal (native oxide) surface, results indicate that the correlation of Bergles and Rohsenow, when paired with the appropriate single-phase heat transfer correlation, adequately predicts the ONB heat flux. Incipience on the oxidized surface occurred at a higher heat flux and superheat than on the plain surface.

References

References
1.
MITR Staff
,
2011
, “
Safety Analysis Report for the MIT Research Reactor
,”
Massachusetts Institute of Technology
,
Cambridge, MA
, Report No. MIT-NRL-11-02.
2.
Bergles
,
A. E.
, and
Rohsenow
,
W. M.
,
1964
, “
The Determination of Forced-Convection Surface-Boiling Heat Transfer
,”
J. Heat Transfer
,
86
(
3
), pp. 
365
372
. 0022-148110.1115/1.3688697
3.
McAdams
,
W. H.
,
1942
,
Heat Transmission
,
2nd ed.
,
McGraw-Hill
,
New York, NY
, pp. 
167
168
.
4.
Bankoff
,
S. G.
,
1958
, “
Entrapment of a Gas in the Spreading of a Liquid Over a Rough Surface
,”
AI ChE J.
,
4
(
1
), pp. 
24
26
. 0569-384510.1002/(ISSN)1547-5905
5.
Jones
,
S. F.
,
Evans
,
G. M.
, and
Galvin
,
K. P.
,
1999
, “
Bubble Nucleation From Gas Cavities—A Review
,”
Adv. Colloid Interface Sci.
,
80
(
1
), pp. 
27
50
. 0001-868610.1016/S0001-8686(98)00074-8
6.
Eddington
,
R. I.
, and
Kenning
,
D. B. R.
,
1979
, “
The Effect of Contact Angle on Bubble Nucleation
,”
Int. J. Heat Mass Transfer
,
22
(
8
), pp. 
1231
1236
. 0017-931010.1016/0017-9310(79)90169-8
7.
Tong
,
W.
,
Bar-Cohen
,
A.
,
Simon
,
T. W.
, and
You
,
S. M.
,
1990
, “
Contact Angle Effects on Boiling Incipience in Highly-Wetting Liquids
,”
Int. J. Heat Mass Transfer
,
33
(
1
), pp. 
91
103
. 0017-931010.1016/0017-9310(90)90144-J
8.
Pioro
,
I. L.
,
Rohsenow
,
W.
, and
Doerffer
,
S. S.
,
2004
, “
Nucleate Pool-Boiling Heat Transfer. I: Review of Parametric Effects on Boiling Surface
,”
Int. J. Heat Mass Transfer
,
47
(
23
), pp. 
5033
5044
. 0017-931010.1016/j.ijheatmasstransfer.2004.06.019
9.
Carey
,
V. P.
,
2008
,
Liquid-Vapor Phase-Change Phenomena
,
2nd ed.
,
Taylor & Francis Group, LLC
,
New York, NY
, pp. 
164
172
.
10.
Hsu
,
Y. Y.
, and
Graham
,
W.
,
1961
, “
An Analytical and Experimental Study of the Thermal Boundary Layer and Ebullition Cycle in Nucleate Boiling
,”
NASA
, Technical Note No. D-594.
11.
Hsu
,
Y. Y.
,
1962
, “
On the Size Range of Active Nucleation Cavities on a Heating Surface
,”
J. Heat Transfer
,
84
(
3
), pp. 
207
216
. 0022-148110.1115/1.3684339
12.
Satō
,
T.
, and
Matsumura
,
H.
,
1964
, “
On the Conditions of Incipient Subcooled-Boiling With Forced Convection
,”
Bull. J. Soc. Mech. Eng.
,
7
(
26
), pp. 
329
338
.10.1299/jsme1958.7.329
13.
Davis
,
E. J.
, and
Anderson
,
G. H.
,
1966
, “
The Incipience of Nucleate Boiling in Forced Convection Flow
,”
AIChE J.
,
12
(
4
), pp. 
774
780
. 0569-384510.1002/(ISSN)1547-5905
14.
Kandlikar
,
S. G.
,
2006
,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
Elsevier
,
Amsterdam
, pp. 
175
181
.
15.
Kandlikar
,
S. G.
,
Mizo
,
V.
,
Cartwright
,
M.
, and
Ikenze
,
E.
,
1997
, “
Bubble Nucleation and Growth Characteristics in Subcooled Flow Boiling of Water
,”
ASME Proceedings of the 32nd National Heat Transfer Conference
,
American Society of Mechanical Engineers
,
New York
, Vol.
4
, pp. 
11
18
.
16.
Sudo
,
Y.
,
Miyata
,
K.
,
Ikawa
,
H.
, and
Kaminaga
,
M.
,
1986
, “
Experimental Study of Incipient Nucleate Boiling in Narrow Vertical Rectangular Channel Simulating Subchannel of Upgraded JRR-3
,”
J. Nucl. Sci. Technol.
,
23
(
1
), pp. 
73
82
. 0022-313110.1080/18811248.1986.9734950
17.
Hong
,
G.
,
Yan
,
X.
,
Yang
,
Y. H.
,
Liu
,
S.
, and
Huang
,
Y. P.
,
2012
, “
Experimental Study of Onset of Nucleate Boiling in a Narrow Rectangular Channel Under Static and Heaving Conditions
,”
Ann. Nucl. Energy
,
39
(
1
), pp. 
26
34
. 0306-454910.1016/j.anucene.2011.09.009
18.
Wang
,
J.
,
Huang
,
Y.
, and
Wang
,
Y.
,
2011
, “
Visualized Study on Specific Points on Demand Curves and Flow Patterns in a Single-Side Heated Narrow Rectangular Channel
,”
Int. J. Heat Fluid Flow
,
32
(
5
), pp. 
982
992
. 0142-727X10.1016/j.ijheatfluidflow.2011.07.001
19.
Wu
,
Y. W.
,
Su
,
G. H.
,
Hu
,
B. X.
, and
Qiu
,
S. Z.
,
2010
, “
Study of Onset of Nucleate Boiling in Bilaterally Heated Narrow Annuli
,”
Int. J. Therm. Sci.
,
49
(
5
), pp. 
741
748
.10.1016/j.ijthermalsci.2009.11.010
20.
Bergles
,
A. E.
, and
Rohsenow
,
W. M.
,
1962
, “
Forced Convection Surface-Boiling Heat Transfer and Burnout in Tubes of Small Diameter
,”
Massachusetts Institute of Technology
, Report No. 8767-21Air Force Contract AF 19(604)-7344.
21.
Kennedy
,
J. E.
,
Roach
,
G. M.
, Jr.
,
Dowling
,
M. F.
,
Abdel-Khalik
,
S. I.
,
Ghiaasiaan
,
S. M.
,
Jeter
,
S. M.
, and
Quershi
,
Z. H.
,
2000
, “
The Onset of Flow Instability in Uniformly Heated Horizontal Microchannels
,”
J. Heat Transfer
,
122
(
1
), pp. 
118
125
. 0022-148110.1115/1.521442
22.
Collier
,
J. G.
, and
Thome
,
J. R.
,
1994
,
Convective Boiling and Condensation
,
3rd ed.
,
Clarendon Press
,
Oxford
, pp.
186
196
.
23.
McAdams
,
W. H.
,
Kennel
,
W. E.
,
Minden
,
C. S.
,
Carl
,
R.
,
Picornell
,
P. M.
, and
Dew
,
J. E.
,
1949
, “
Heat Transfer at High Rates to Water with Surface Boiling
,”
Ind. Eng. Chem.
,
41
(
9
), pp. 
1945
1953
. 0019-786610.1021/ie50477a027
24.
You
,
S. M.
,
Simon
,
T. W.
, and
Bar-Cohen
,
A.
,
1995
, “
Effects of Dissolved Gas Content on Pool Boiling of a Highly Wetting Fluid
,”
J. Heat Transfer
,
117
(
3
), pp. 
687
692
. 0022-148110.1115/1.2822631
25.
Rainey
,
K. N.
,
You
,
S. M.
, and
Lee
,
S.
,
2003
, “
Effect of Pressure, Subcooling, and Dissolved Gas on Pool Boiling Heat Transfer From Microporous Surfaces in FC-72
,”
J. Heat Transfer
,
125
(
1
), pp. 
75
83
. 0022-148110.1115/1.1527890
26.
Forrest
,
E. C.
,
Hu
,
L. W.
,
Buongiorno
,
J.
, and
McKrell
,
T. J.
, “
Convective Heat Transfer in a High Aspect Ratio Mini-Channel Heated on One Side
,”
J. Heat Transfer
. (submitted) 0022-1481
27.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
Jan
), pp. 
3
8
.
28.
Forrest
,
E.
,
Schulze
,
R.
,
Liu
,
C.
, and
Dombrowski
,
D.
,
2015
, “
Influence of Surface Contamination on the Wettability of Heat Transfer Surfaces
,”
Int. J. Heat Mass Transfer
,
91
, pp. 
311
317
. 0017-931010.1016/j.ijheatmasstransfer.2015.07.112
You do not currently have access to this content.