Austenitic steel is a candidate material for supercritical water-cooled reactor (SCWR). This study is to investigate the stress corrosion cracking (SCC) behavior of HR3C under the effect of supercritical water chemistry. A transition phenomenon of the water parameters was monitored during a pseudocritical region by water quality experiments at 650°C and 30 MPa. The stress–strain curves and fracture time of HR3C were obtained by slow strain rate tensile (SSRT) tests in the supercritical water at 620°C and 25 MPa. The concentration of the dissolved oxygen (DO) was 2001000μg/kg, and the strain rate was 7.5×107/s. The recent results showed that the failure mode was dominated by intergranular brittle fracture. The relations of the oxygen concentration and the fracture time were nonlinear. 200500μg/kg of oxygen accelerated the cracking, but a longer fracture time was measured when the oxygen concentration was increased to 1000μg/kg. Chromium depletion occurred in the oxide layer at the tip of cracks. Grain size increased and chain-precipitated phases were observed in the fractured specimens. These characteristics were considered to contribute to the intergranular SCC.

References

References
1.
Was
,
G. S.
, and
Teysseyre
,
S.
,
2005
, “
Challenges and Recent Progress in Corrosion and Stress Corrosion Cracking of Alloys for Supercritical Water Reactor Core Components
,”
Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors
,
TMS - Minerals Metals and Materials Society
,
Salt Lake City, UT
, pp. 
1343
1357
.
2.
Was
,
G. S.
,
Ampornrat
,
P.
,
Gupta
,
G.
,
Teysseyre
,
S.
,
West
,
E. A.
,
Allen
,
T. R.
,
Sridharan
,
K.
,
Tan
,
L.
,
Chen
,
Y.
, and
Ren
,
X.
,
2007
, “
Corrosion and Stress Corrosion Cracking in Supercritical Water
,”
J. Nucl. Mater.
,
371
(
1
), pp. 
176
201
.10.1016/j.jnucmat.2007.05.017
3.
Penttilä
,
S.
,
Toivonen
,
A.
,
Heikinheimo
,
L.
, and
Novotny
,
R.
,
2009
, “
SCC Properties and Oxidation Behaviour of Austenitic Alloys at Supercritical Water Conditions
,”
Proceedings of the 4th International Symposium on Supercritical Water-Cooled Reactors
,
FZ Karlsruhe
,
Heidelberg, Germany
, Paper No. 60.
4.
Zhou
,
R.
,
West
,
E. A.
,
Jiao
,
Z.
, and
Was
,
G. S.
,
2009
, “
Irradiation-assisted Stress Corrosion Cracking of Austenitic Alloys in Supercritical Water
,”
J. Nucl. Mater.
,
395
(
1–3
), pp. 
11
22
.10.1016/j.jnucmat.2009.09.010
5.
Novotny
,
R.
,
Hähner
,
P.
,
Siegl
,
J.
,
Haušild
,
P.
,
Ripplinger
,
S.
,
Penttilä
,
S.
, and
Toivonen
,
A.
,
2011
, “
Stress Corrosion Cracking Susceptibility of Austenitic Stainless Steels in Supercritical Water Conditions
,”
J. Nucl. Mater.
,
409
(
2
), pp. 
117
123
.10.1016/j.jnucmat.2010.09.018
6.
Tsuchiya
,
Y.
,
Kano
,
F.
,
Saito
,
N.
,
Ookawa
,
M.
,
Kaneda
,
J.
, and
Hara
,
N.
,
2007
, “
Corrosion and SCC Properties of Fine Grain Stainless Steel in Subcritical and Supercritical Pure Water
,”
Proceedings of the NACE International Corrosion2007 Conference & EXPO, NACE International
,
NACE International
,
Nashville, TN
, Paper No. 07415.
7.
Eliaz
,
N.
,
Mitton
,
D. B.
, and
Latanision
,
R. M.
,
2003
, “
Review of Materials Issues in Supercritical Water Oxidation Systems and the Need for Corrosion Control
,”
Trans. Indian Inst. Met.
,
56
(
3
), pp. 
305
314
.
8.
Bartels
,
D. M.
,
Anderson
,
M.
,
Wilson
,
P.
,
Allen
,
T.
, and
Sridharan
,
K.
,
2006
, “
Supercritical Water Radiolysis Chemistry Supercritical Water Corrosion
,”
INL Generation IV Nuclear Energy Systems, Technical Document
, http://nuclear.inel.gov/deliverables/docs/uwnd_scw_level_ii_sep_2006_v3.pdf
9.
Shen
,
Z.
,
Zhang
,
L.
,
Tang
,
R.
, and
Zhang
,
Q.
,
2014
, “
The Effect of Temperature on the SSRT Behavior of Austenitic Stainless Steels in SCW
,”
J. Nucl. Mater.
,
454
(
1–3
), pp. 
274
282
.10.1016/j.jnucmat.2014.08.006
10.
Zhang
,
Q.
,
Tang
,
R.
,
Yin
,
K.
,
Luo
,
X.
, and
Zhang
,
L.
,
2009
, “
Corrosion Behavior of Hastelloy C-276 in Supercritical Water
,”
Corros. Sci.
,
51
(
9
), pp. 
2092
2097
.10.1016/j.corsci.2009.05.041
11.
Steven
,
A. A.
, and
David
,
S. M.
,
2003
, “
Measurement of the Nickel/Nickel Oxide Transition in Ni-Cr-Fe Alloys and Updated Data and Correlations to Quantify the Effect of Aqueous Hydrogen on Primary Water SCC
,”
Lockheed Martin Corporation
, Schenectady, NY, .
12.
Guzonas
,
D.
,
Tremaine
,
P.
, and
Jay-Gerin
,
J.-P.
,
2009
, “
Chemistry Control Challenges in a Supercritical Water-Cooled Reactor
,”
Power Plant Chem.
,
11
(
5
), pp. 
284
291
.
13.
Fujisawa
,
R.
,
Nishimura
,
K.
,
Nishida
,
T.
,
Sakaihara
,
M.
,
Kurata
,
Y.
, and
Watanabe
,
Y.
,
2005
, “
Cracking Susceptibility of Ni Base Alloys and 316 Stainless Steel in Less Oxidizing or Reducing SCW
,”
Corrosion 2005
,
NACE International
,
Houston, TX
, Paper No. 05395.
You do not currently have access to this content.