Selecting and qualifying a fuel cladding material for the Canadian supercritical water-cooled reactor (SCWR) concept remains the most significant materials challenge to be overcome. The peak cladding temperature in the Canadian SCWR concept is predicted to be as high as 800°C. While advanced materials show promise for future deployment, currently, the best options available are austenitic stainless steels and nickel-based alloys. Many of these alloys were extensively studied for use as fuel cladding materials in the 1960s, as part of programs to develop nuclear superheated steam reactors. After extensive out-of-pile testing and consideration of the existing data, five alloys (347 SS, 310 SS, Alloy 800H, Alloy 625, and Alloy 214) were selected for more detailed assessment using a combination of literature surveys and targeted testing to fill in major knowledge gaps. Wherever possible, performance criteria were developed for key materials properties. This paper summarizes the methodology used for the assessment and presents the key results, which show that 310 SS, Alloy 800H, and Alloy 625 would all be expected to give acceptable performance in the Canadian SCWR concept.

References

References
1.
Cohen
,
K.
, and
Zebroski
,
E.
,
1959
, “
Operation Sunrise
,”
Nucleonics
,
17
(
3
), pp.
63
70
.
2.
Dollezhal
,
N.A.
,
Krasin
,
A. K.
,
Aleshchenkov
,
P. I.
,
Galanin
,
A. N.
,
Grigoryants
,
A. N.
,
Emelyanov
,
I. Y.
,
Kugushev
,
N. M.
,
Minashin
,
M. E.
,
Mityaev
,
U. I.
,
Florinsky
,
B. V.
, and
Sharpov
,
N. N.
,
1958
, “
Uranium-Graphite Reactor With Superheated High Pressure Steam
,”
Proceedings of the 2nd United Nations International Conference on the Peaceful Uses of Atomic Energy
,
Geneva
, Sept. 1–13, Vol. 
8
, pp.
398
414
.
3.
Wright
,
J. H.
, and
Patterson
,
J. F.
,
1966
, “
Status and Application of Supercritical-Water Reactor Coolant
,”
Proceedingsof the American Power Conference
, Vol. 
XXVIII
, pp.
139
149
.
4.
Moore
,
R. V.
,
Barker
,
A.
,
Bishop
,
J. F. W.
,
Bradley
,
N.
,
Iliffe
,
C. E.
,
Nichols
,
R. W.
,
Thorn
,
J. D.
,
Tyzack
,
C.
, and
Walker
,
V.
,
1964
, “
The Utilisation of Supercritical Steam in Nuclear Power Reactors
,” Final Report of the Supercritical Steam Panel,
United Kingdom Atomic Energy Authority
, .
5.
Kornbichler
,
H.
,
1964
, “
Superheat Reactor Development in the Federal Republic of Germany
,”
Proceedings of the 3rd International Conference on the Peaceful Uses of Atomic Energy
,
Geneva
,
Aug. 31–Sept. 9
, Vol. 
6
, pp.
266
276
.
6.
Margen
,
P. H.
,
Leine
,
L.
, and
Nilson
,
R.
,
1964
, “
The Design of the Marviken Boiling Heavy-Water Reactor With Nuclear Superheat
,”
Proceedings of the 3rd International Conference on the Peaceful Uses of Atomic Energy
,
Geneva
, Aug. 31–Sept.9, Vol. 
6
, pp.
277
288
.
7.
Gu
,
G. P.
,
Zheng
,
W.
, and
Guzonas
,
D.
,
2010
, “
Corrosion Database for SCWR Development
,”
2nd Canada-China Joint Workshop on Supercritical Water-Cooled Reactors (CCSC-2010)
,
Toronto ON, Canada
, Apr. 25–28.
8.
Strasser
,
A.
,
Santucci
,
J.
,
Lindquist
,
K.
,
Yario
,
W.
,
Stern
,
G.
,
Goldstein
,
L.
, and
Joseph
,
L.
,
1982
, “
An Evaluation of Stainless Steel Cladding for Use in Current Design LWRs
,”
Canadian Nuclear Society
,
Toronto, Canada
, .
9.
Emel’yanov
,
I.
,
Shatskaya
,
O. A.
,
Rivkin
,
E. Y.
, and
Nikolenko
,
N. Y.
,
1972
, “
Strength of Construction Elements in the Fuel Channels of the Beloyarsk Power Station Reactors
,”
Atomnaya Energiya
,
33
(
3
), pp.
729
733
[Sov. At. Energy33(3), pp. 842–847 (1972)] [in Russian]. 0004-7163
10.
Schulenberg
,
T.
,
2013
, “
Material Requirements of the High Performance Light Water Reactor
,”
J. Supercrit. Fluids
,
77
, pp.
127
133
.
11.
Higuchi
,
S.
,
Sakurai
,
S.
,
Yamada
,
K.
, and
Ishiwatari
,
Y.
,
2011
, “
Feasibility Study for Design of Fuel Rod in JSCWR
,”
Proceedings of the 5th International Symposium Supercritical-Water-Cooled Reactors (ISSCWR-5)
,
Vancouver, Canada
,
Mar. 13–16
,
Canadian Nuclear Society
,
Toronto, Canada
, .
12.
Pearl
,
W. L.
,
Brush
,
E. G.
,
Gaul
,
G. G.
, and
Wozadlo
,
G. P.
,
1965
, “
General Corrosion of Incoloy-800® in Simulated Superheat Reactor Environment
,”
Nucl. Appl.
,
1
(
3
), pp.
235
245
.
13.
Pearl
,
W. L.
,
Brush
,
E. G.
,
Gaul
,
G. G.
, and
Leistikow
,
S.
,
1967
, “
General Corrosion of Inconel Alloy 625® in Simulated Superheat Reactor Environment
,”
Nucl. Appl.
,
3
(
7
), pp.
418
432
.
14.
Viswanathan
,
R.
,
Henry
,
J. F.
,
Tanzosh
,
J.
,
Stanko
,
G.
,
Shingledecker
,
J.
,
Vitalis
,
B.
, and
Purgert
,
R.
,
2005
, “
U.S. Program on Materials Technology for Ultra-Supercritical Coal Power Plants
,”
J. Mater. Eng. Perform.
,
14
(
3
), pp.
281
292
. 1059-949510.1361/10599490524039
15.
Sarver
,
J. M.
, and
Tanzosh
,
J. M.
,
2013
, “
Effect of Temperature, Alloy Composition and Surface Treatment on the Steamside Oxidation/Oxide Exfoliation Behavior of Candidate A-USC Boiler Materials
,”
Presented at the 7th International Conference on Advances in Materials Technology for Fossil Power Plants
,
Waikoloa, HI
, Oct. 22–25,
Babcock & Wilcox
, Technical Paper No. BR-1898.
16.
Cinosi
,
N.
,
Haq
,
I.
,
Bluck
,
M.
, and
Walker
,
S. P.
,
2011
, “
The Effective Thermal Conductivity of Crud and Heat Transfer From Crud-coated PWR Fuel
,”
Nucl. Eng. Des.
,
241
(
3
), pp.
792
798
. 0029-549310.1016/j.nucengdes.2010.12.015
17.
Brush
,
E. G.
,
1965
, “
Corrosion Rate Law Considerations in Superheated Steam
,”
Nucl. Appl.
,
1
(
3
), pp.
246
251
.
18.
Yi
,
Y.
,
Watanabe
,
Y.
,
Kondo
,
T.
,
Kimura
,
H.
, and
Sato
,
M.
,
2001
, “
Oxidation Rate of Advanced Heat-Resistant Steels for Ultra-Supercritical Boilers in Pressurized Superheated Steam
,”
J. Pressure Vessel Technol.
,
123
(
3
), pp.
391
397
. 0094-993010.1115/1.1373656
19.
Betova
,
I.
,
Bojinov
,
M.
,
Kinnunen
,
P.
,
Penttilä
,
S.
, and
Saario
,
T.
,
2007
, “
Surface Film Electrochemistry of Austenitic Stainless Steel and Its Main Constituents in Supercritical Water
,”
J. Supercrit. Fluids
,
43
(
2
), pp.
333
340
.10.1016/j.supflu.2007.06.005
20.
Steeves
,
G.
,
Cook
,
W.
, and
Guzonas
,
D.
,
2015
, “
Development of Kinetic Models for the Corrosion Behaviour of Candidate Alloys for the Canadian SCWR (accepted)
,”
Presented at the 7th International Symposium on Supercritical Water-Cooled Reactors(ISSCWR-7)
,
Helsinki, Finland
, Mar. 15–18.
21.
Guzonas
,
D. A.
,
2011
, “
Materials and Chemistry for a Supercritical Water-Cooled Reactor—Progress and Challenges
,”
5th International Symposium on Supercritical-Water-Cooled Reactors (ISSCWR-5)
,
Vancouver, BC, Canada
, Mar. 13–16, Paper No. K005.
22.
Li
,
J.
,
Penttilä
,
S.
, and
Zheng
,
W.
,
2012
, “
Effects of Surface Modifications on SCW Corrosion Resistance
,”
Characterization of Minerals, Metals, and Materials: Proceedings of a Symposium Sponsored by the Materials Characterization Committee of the Extraction and Processing Division of TMS (The Minerals, Metals & Materials Society)
,
Orlando, FL
, Mar. 11–15,
Wiley
,
Hoboken, NJ
, pp.
43
48
.
23.
Tsuchiya
,
Y.
,
Kano
,
F.
,
Saito
,
N.
,
Ookawa
,
M.
,
Kaneda
,
J.
, and
Hara
,
N.
,
2007
, “
Corrosion and SCC Properties of Fine Grain Stainless Steel in Subcritical and Supercritical Pure Water
,”
Corrosion 2007 Conference & Expo
,
Nashville, TN
, Mar. 11–15,
NACE
,
Houston
, Paper No. 07415.
24.
Ruther
,
W. E.
,
Schlueter
,
R. R.
,
Lee
,
R. H.
, and
Hart
,
R. K.
,
1966
, “
Corrosion Behavior of Steels and Nickel Alloys in Superheated Steam
,”
Presented at 21st Conference, National Association of Corrosion Engineers
,
St. Louis, MO
, Mar. 15–19,
Corrosion
,
22
(
5
), pp.
147
155
.
25.
Bischoff
,
J.
,
2011
, “
Oxidation Behavior of Ferritic-Martensitic and ODS Steels in Supercritical Water
,” Ph.D. Dissertation,
Pennsylvania State University
.
26.
Motta
,
A. T.
,
Yilmazbayhan
,
A.
,
Gomes da Silva
,
M. J.
,
Comstock
,
R. J.
,
Was
,
G. S.
,
Busby
,
J. T.
,
Gartner
,
E.
,
Peng
,
Q.
,
Jeong
,
Y. H.
, and
Park
,
J. Y.
,
2007
, “
Zirconium Alloys for Supercritical Water Reactor Applications: Challenges and Possibilities
,”
J. Nucl. Mater.
,
371
(
1–3
), pp.
61
75
.
27.
Guzonas
,
D. A.
, and
Cook
,
W. G.
,
2012
, “
Cycle Chemistry and Its Effect on Materials in a Supercritical Water-cooled Reactor: A Synthesis of Current Understanding
,”
Corros. Sci.
,
65
, pp.
48
66
.
28.
Wright
,
I. G.
, and
Dooley
,
R. B.
,
2010
, “
A Review of the Oxidation Behaviour of Structural Alloys in Steam
,”
Int. Mater. Rev.
,
55
(
3
), pp.
129
167
. 0950-660810.1179/095066010X12646898728165
29.
Special Metals Corporation
,
2004
, “
INCOLOY® Alloy 800H & 800HT Technical Bulletin
,” , Available: www.specialmetals.com/alloys.
30.
Ru
,
X.
, and
Staehle
,
R. W.
,
2013
, “
Historical Experience Providing Bases for Predicting Corrosion and Stress Corrosion in Emerging Supercritical Water Nuclear Technology: Part 1—Review
,”
Corrosion
,
69
(
3
), pp.
211
229
.10.5006/0726
31.
Clark
,
C. L.
,
Rutherford
,
J. J. B.
,
Wilder
,
A. B.
, and
Cordovi
,
M. A.
,
1962
, “
Metallurgical Evaluation of Superheater Tube Alloys after 12 and 18 Months’ Exposure to Steam at 1200, 1350 and 1500 F
,”
Trans. ASME J. Eng. Power
,
84
(
3
), pp.
258
287
. 0097-6822
32.
Spalaris
,
C. N.
,
1963
, “
Finding a Corrosion-Resistant Cladding for Superheater Fuels
,”
Nucleonics
,
21
(
9
), pp.
41
49
.
33.
Comprelli
,
F. A.
,
MacMillan
,
D. F.
, and
Spalaris
,
C. N.
,
1963
, “
Materials for Superheated Fuel Sheaths: Relative Performance of Alloys in Superheated Steam Environments
,” .
34.
Ruther
,
W. E.
, and
Greenberg
,
S.
,
1964
, “
Corrosion of Steels and Nickel Alloys in Superheated Steam
,”
J. Electrochem. Soc.
,
111
(
10
), pp.
1116
1121
. 0013-465110.1149/1.2425932
35.
Fulger
,
M.
,
Ohai
,
D.
,
Mihalache
,
M.
,
Pantiru
,
M.
, and
Malinovschi
,
V.
,
2009
, “
Oxidation Behavior of Incoloy 800 Under Simulated Supercritical Water Conditions
,”
J. Nucl. Mater.
,
385
(
2
), pp.
288
293
. 0022-311510.1016/j.jnucmat.2008.12.004
36.
Fulger
,
M.
,
Mihalache
,
M.
,
Ohai
,
D.
,
Fulger
,
S.
, and
Constantin Valeca
,
S.
,
2011
, “
Analyses of Oxide Films Grown on AISI 304L Stainless Steel and Incoloy 800HT Exposed to Supercritical Water Environment
,”
J. Nucl. Mater.
,
415
(
2
), pp.
147
157
. 0022-311510.1016/j.jnucmat.2011.05.007
37.
Penttilä
,
S.
,
2008
, “
Materials for the SCWR Concept (experimental results of VTT and JRC-IE)
,”
GEN4FIN Seminar
,
Lappeenranta, Finland
, Oct. 2–3.
38.
Claudson
,
T. T.
, and
Pessl
,
H. J.
,
1965
, “
Evaluation of Iron- and Nickel-Base Alloys for Medium and High Temperature Reactor Applications: Part II
,” .
39.
Tan
,
L.
,
Allen
,
T. R.
, and
Yang
,
Y.
,
2011
, “
Corrosion Behavior of Alloy 800H (Fe-Cr21-Ni32) in Supercritical Water
,”
Corros. Sci.
,
53
(
2
), pp.
703
711
. 0010-938X10.1016/j.corsci.2010.10.021
40.
Allen
,
T. R.
,
Chen
,
Y.
,
Ren
,
X.
,
Sridharan
,
K.
,
Tan
,
L.
,
Was
,
G. S.
,
West
,
E.
, and
Guzonas
,
D. A.
,
2012
, “Material Performance in Supercritical Water,”
Comprehensive Nuclear Materials
(Material Performance in Supercritical Water, Vol.
5
),
R. J. M.
Konings
, ed.,
Elsevier
,
Amsterdam
, pp.
279
326
.
41.
Wozadlo
,
G. P.
, and
Pearl
,
W. L.
,
1965
, “
General Corrosion of Stainless Steels and Nickel Base Alloys Exposed Isothermally in Superheated Steam
,”
Corrosion
,
21
(
11
), pp.
355
369
.10.5006/0010-9312-21.11.355
42.
McCoy
,
H. E.
, and
McNabb
,
B.
,
1977
, “
Corrosion of Several Metals in Supercritical Steam at 538°C
,”
Oak Ridge National Laboratory
, .
43.
Mahboubi
,
S.
,
Botton
,
G.
, and
Kish
,
J.
,
2014
, “
Microstructural Characterization of Oxide Scales Grown on Austenitic Fe-Cr-Ni Alloys Exposed to Supercritical Water (SCW)
,”
2014 Canada-China Conference on Advanced Reactor Development (CCCARD-2014)
,
Niagara Falls, Canada
, Apr. 27–30.
44.
Leistikow
,
S.
,
1972
, “
Isothermal Steam Corrosion of Commercial Grade Austenitic Stainless Steels and Nickel Base Alloys in Two Technical Surface Conditions
,”
Proceedings of the Fourth International Congress on Metallic Corrosion
,
Amsterdam, Netherlands
, Sept. 7–14,
National Association of Corrosion Engineers
,
Houston, TX
, pp.
278
290
.
45.
Cowen
,
H. C.
,
Longton
,
P. B.
, and
Hand
,
K.
,
1966
, “
Corrosion of Stainless Steels and Nickel-Base Alloys in Supercritical Steam
,” .
46.
Sarver
,
J. M.
,
2009
, “
The Oxidation Behavior of Candidate Materials for Advanced Energy Systems in Steam at Temperatures Between 650°C and 800°C
,”
14th International Conference on Environmental Degradation of Materials in Nuclear Power Systems
,
Virginia Beach
, Aug. 23–27, pp.
1730
1739
.
47.
Huang
,
X.
,
2014
, Unpublished data.
48.
Abe
,
F.
, and
Yoshida
,
H.
,
1985
, “
Corrosion Behaviors of Heat-resisting Alloys in Steam at 800°C and 40 atm Pressure
,”
Zeitschrift fur Metallkunde
,
76
(
3
), pp.
219
225
.
You do not currently have access to this content.