The effect of high-temperature microstructure degradation (thermal ageing) on the corrosion resistance of austenitic stainless steels in supercritical water (SCW) was evaluated in this study. Mill-annealed (MA) and thermally treated (TT) samples of Type 316L and Type 310S stainless steel were exposed in 25 MPa SCW at 550°C with 8 ppm dissolved oxygen in a flowing autoclave testing loop. The thermal treatments applied to Type 316L (815°C for 1000 hr + water quench) and Type 310S (800°C for 1000 hr + air cool) were successful in precipitating the expected intermetallic phases in each alloy, both within the grains and on the grain boundaries. It was found that a prolonged time at relatively high temperature was sufficient to suppress significant compositional variation across the various intermetallic phase boundaries. This paper presents the results of the gravimetric analysis and oxide scale characterization using scanning electron microscopy (SEM) coupled with X-ray energy-dispersive spectroscopy (EDS). The role played by the fine precipitate structure on formation of the oxide scale, and thus corrosion resistance, is discussed. The combined role of dissolved oxygen and flow (revealed by examining the differences between Type 316L samples exposed in a static autoclave and in the flowing autoclave loop) is also addressed. It was concluded that formation of intermetallic phase precipitates during high-temperature exposure is not likely to have a major effect on the apparent corrosion resistance because of the discontinuous nature of the precipitation.

References

References
1.
Was
,
G. S.
,
Ampornrat
,
P.
,
Gupta
,
G.
,
Teysseyre
,
S.
,
West
,
E. A.
,
Allen
,
T. R.
,
Sridharan
,
K.
,
Tan
,
L.
,
Chen
,
Y.
,
Ren
,
X.
, and
Pister
,
C.
,
2011
, “
Corrosion and Stress Corrosion Cracking in Supercritical Water
,”
J. Nucl. Mater.
,
371
(
1–3
), pp. 
176
201
. 0022-311510.1016/j.jnucmat.2007.05.017
2.
Kaneda
,
J.
,
Kasahara
,
S.
,
Kano
,
F.
,
Saito
,
N.
,
Shikama
,
T.
, and
Matsui
,
H.
,
2011
, “
Material Development for Supercritical Water-Cooled Reactor
,”
5th International Symposium on Supercritical Water-Cooled Reactors
,
Vancouver, BC, Canada
,
Canadian Nuclear Society
,
Toronto, ON
, pp. 
13
16
.
3.
Allen
,
T. R.
,
Chen
,
Y.
,
Ren
,
X.
,
Sridharan
,
K.
,
Tan
,
L.
,
Was
,
G. S.
,
West
,
E.
, and
Guzonas
,
D.
,
2012
, “Material Performance in Supercritical Water,”
Comprehensive Nuclear Materials: Material Performance and Corrosion/Waste Materials
, R. J. M. Konings, ed.,
Elsevier
,
Amsterdam, The Netherlands
, Vol. 
5
, pp. 
279
326
.
4.
Guzonas
,
D. A.
, and
Cook
,
W. G.
,
2012
, “
Cycle Chemistry and its Effect on Materials in a Supercritical Water-Cooled Reactor: A Synthesis of Current Understanding
,”
Corros. Sci.
,
65
, pp. 
48
66
. 0010-938X10.1016/j.corsci.2012.08.006
5.
Penttila
,
S.
,
Toivonen
,
A.
,
Rissanen
,
L.
, and
Heikinheimo
,
L.
,
2010
, “
Generation IV Material Issues—Case SCWR
,”
J. Disaster Res.
,
5
(
4
), pp. 
469
477
.
6.
Guzonas
,
D.
, and
Novotny
,
R.
,
2014
, “
Supercritical Water-Cooled Reactor Materials—Summary of Research and Open Issues
,”
Prog. Nucl. Energy
,
77
, pp. 
361
372
. 0149-197010.1016/j.pnucene.2014.02.008
7.
Mulford
,
R. A.
,
Hall
,
E. L.
, and
Briant
,
C. L.
,
1983
, “
Sensitization of Austenitic Stainless Steels. II: Commercial Purity Alloys
,”
Corrosion
,
39
(
4
), pp. 
132
143
.10.5006/1.3580828
8.
Tavares
,
S. S. M.
,
Moura
,
V.
,
da Costa
,
V. C.
,
Ferreira
,
M. L. R.
, and
Pardal
,
J. M.
,
2009
, “
Microstructural Changes and Corrosion Resistance of AISI 310S Steel Exposed to 600–800°C
,”
Mater. Charact.
,
60
(
6
), pp. 
573
578
. 1044-580310.1016/j.matchar.2008.12.005
9.
Sourmail
,
T.
, and
Bhadeshia
,
H. K. D. H.
,
2003
, “
Modelling Simultaneous Precipitation Reactions in Austenitic Stainless Steels
,”
Calphad
,
27
(
2
), pp. 
169
175
. 0364-591610.1016/j.calphad.2003.08.002
10.
Weiss
,
B.
, and
Stickler
,
R.
,
1972
, “
Phase Instabilities During High Temperature Exposure of 316 Austenitic Stainless Steel
,”
Metall. Trans.
,
3
(
4
), pp. 
851
866
. 0026-086X10.1007/BF02647659
11.
Spruiell
,
J. E.
,
Scott
,
J. A.
,
Ary
,
C. S.
, and
Hardin
,
R. L.
,
1973
, “
Microstructural Stability of Thermal-Mechanically Pretreated Type 316 Austenitic Stainless Steel
,”
Metall. Trans.
,
4
(
6
), pp. 
1533
1544
. 0026-086X
12.
Lai
,
J. K. L.
,
1983
, “
A Review of Precipitation Behavior in AISI Type 316 Stainless Steel
,”
Mater. Sci. Eng.
,
58
(
2
), pp. 
195
209
. 0025-541610.1016/0025-5416(83)90046-0
13.
Sourmail
,
T.
,
2001
, “
Precipitation in Creep Resistant Austenitic Stainless Steels
,”
Mater. Sci. Technol.
,
17
(
1
), pp. 
1
14
. 0267-083610.1179/026708301101508972
14.
Mahboubi
,
S.
,
Botton
,
G. A.
, and
Kish
,
J. R.
,
2014
, “
Oxide Scales Formed on Austenitic Fe-Cr-Ni Alloys Exposed to Supercritical Water (SCW): Role of Alloying Elements
,”
19th Pacific Basin Nuclear Conference
,
Vancouver, BC, Canada
,
Canadian Nuclear Society
,
Toronto, ON
, Paper No. 286.
15.
Li
,
J.
,
Zheng
,
W.
,
Penttilä
,
S.
,
Liu
,
P.
,
Woo
,
O. T.
, and
Guzonas
,
D.
,
2014
, “
Microstructure Stability of Candidate Stainless Steels for Gen-IV SCWR Fuel Cladding Application
,”
J. Nucl. Mater.
,
454
(
1–3
), pp. 
7
11
. 0022-311510.1016/j.jnucmat.2014.06.043
16.
Jiao
,
Y.
,
Kish
,
J.
,
Zheng
,
W.
,
Guzonas
,
D.
, and
Cook
,
W.
,
2014
, “
Effect of Thermal Ageing on the Corrosion Resistance of Stainless Steel Type 316L Exposed in Supercritical Water
,”
Canada-China Conference on Advanced Reactor Development
,
Niagara Falls, ON, Canada
,
Canadian Nuclear Society
,
Toronto, ON
, Paper No. 27.
17.
Kriaa
,
C. A.
,
Hamdi
,
N.
, and
Sidhom
,
H.
,
2008
, “
Assessment of Intergranular Corrosion of Heat Treated Austenitic Stainless Steel (AISI 316L Grade) by Electron Microscopy and Electrochemical Tests
,”
Prot. Met.
,
44
(
5
), pp. 
506
513
.10.1134/S0033173208050172
18.
White
,
W. E.
, and
Le May
,
I.
,
1970
, “
Metallographic Observations on the Formation and Occurrence of Ferrite, Sigma Phase, and Carbides in Austenitic Stainless Steels: Part I: Studies of AISI Type 310 Stainless Steel
,”
Metallography
,
3
(
1
), pp. 
35
50
. 0026-080010.1016/0026-0800(70)90003-0
19.
Was
,
G. S.
,
Teysseyre
,
S.
, and
Jiao
,
Z.
,
2006
, “
Corrosion of Austenitic Alloys in Supercritical Water
,”
Corrosion
,
62
(
11
), pp. 
989
1005
.10.5006/1.3278237
20.
Gao
,
X.
,
Wu
,
X.
,
Zhang
,
Z.
,
Guan
,
H.
, and
Han
,
E. H.
,
2007
, “
Characterization of Oxide Films Grown on 316L Stainless Steel Exposed to H2O2-Containing Supercritical Water
,”
J. Supercrit. Fluids
,
42
(
1
), pp. 
157
163
. 0896-844610.1016/j.supflu.2006.12.020
21.
Luo
,
X.
,
Tang
,
R.
,
Long
,
C.
,
Miao
,
Z.
,
Peng
,
Q.
, and
Li
,
C.
,
2008
, “
Corrosion Behavior of Austenitic and Ferritic Steels in Supercritical Water
,”
Nucl. Eng. Technol.
,
40
(
2
), pp. 
147
154
.10.5516/NET.2008.40.2.147
22.
Sun
,
M.
,
Wu
,
X.
,
Zhang
,
Z.
, and
Han
,
E. H.
,
2009
, “
Progress in Corrosion Resistant Materials for Supercritical Water Reactors
,”
Corros. Sci.
,
51
(
11
), pp. 
1069
1072
. 0010-938X10.1016/j.corsci.2009.03.008
23.
Fulger
,
M.
,
Mihalache
,
M.
,
Ohai
,
D.
,
Fulger
,
S.
, and
Valeca
,
S. C.
,
2011
, “
Analyses of Oxide Films Grown on AISI 304L Stainless Steel and Incoloy 800HT Exposed to Supercritical Water Environment
,”
J. Nucl. Mater.
,
415
(
2
), pp. 
147
157
. 0022-311510.1016/j.jnucmat.2011.05.007
24.
Svishchev
,
I. M.
,
Carvajal-Ortiz
,
R. A.
,
Choudhry
,
K. I.
, and
Guzonas
,
D. A.
,
2013
, “
Corrosion Behavior of Stainless Steel 316 in Sub- and Supercritical Aqueous Environments: Effect of LiOH Additions
,
Corros. Sci.
,
72
, pp. 
20
25
. 0010-938X10.1016/j.corsci.2013.02.005
25.
Sun
,
M.
,
Wu
,
X.
,
Han
,
E. H.
, and
Rao
,
J.
,
2009
, “
Microstructural Characteristics of Oxide Scales Grown on Stainless Steel Exposed to Supercritical Water
,”
Scr. Mater.
,
61
(
10
), pp. 
996
999
.10.1016/j.scriptamat.2009.08.013
26.
Penttilä
,
S.
,
Toivonen
,
A.
,
Li
,
J.
,
Zheng
,
W.
, and
Novotny
,
R.
,
2013
, “
Effect of Surface Modification on the Corrosion Resistance of Austenitic Stainless Steel 316L in Supercritical Water Conditions
,”
J. Supercrit. Fluids
,
81
, pp. 
157
163
. 0896-844610.1016/j.supflu.2013.05.002
27.
Abe
,
H.
,
Hong
,
S. M.
, and
Watanabe
,
Y.
,
2014
, “
Oxidation Behavior of Austenitic Stainless Steels as Fuel Cladding Candidate Materials for SCWR in Superheated Steam
,”
Nucl. Eng. Des.
,
280
, pp. 
652
660
. 0029-549310.1016/j.nucengdes.2014.08.020
28.
Ruther
,
W. E.
,
Schlueter
,
R. R.
,
Lee
,
R. H.
, and
Hart
,
R. K.
,
1966
, “
Corrosion Behavior of Steels and Nickel Alloys in Superheated Steam
,
Corrosion
,
22
(
5
), pp. 
147
155
.10.5006/0010-9312-22.5.147
29.
Tsuchiya
,
Y.
,
Kano
,
F.
,
Saito
,
N.
,
Ookawa
,
M.
,
Kaneda
,
J.
, and
Hara
,
N.
,
2007
, “
Corrosion and SCC Properties of Fine Grain Stainless Steel in Subcritical and Supercritical Pure Water
,”
CORROSION/07
,
NACE International
,
Houston, TX
, Paper No. 07415.
30.
Persuad
,
S. Y.
,
Korinek
,
A.
,
Huang
,
J.
,
Botton
,
G. A.
, and
Newman
,
R. C.
,
2014
, “
Internal Oxidation of Alloy 600 Exposed to Hydrogenated Steam and the Beneficial Effects of Thermal Treatment
,”
Corros. Sci.
,
86
(
3
), pp. 
108
122
. 0010-938X10.1016/j.corsci.2014.04.041
31.
Daigo
,
Y.
,
Watanabe
,
Y.
, and
Sue
,
K.
,
2007
, “
Effect of Chromium Ion from Autoclave Material on Corrosion Behavior of Nickel-Based Alloys in Supercritical Water
,”
Corrosion
,
63
, pp. 
277
284
.10.5006/1.3278354
32.
Maekawa
,
T.
,
Kagawa
,
M.
, and
Nakajima
,
N.
,
1968
, “
Corrosion Behaviors of Stainless Steel in High-Temperature Water and Superheated Steam
,”
Trans. Jpn. Inst. Met.
,
9
(
2
), pp. 
130
136
.10.2320/matertrans1960.9.130
You do not currently have access to this content.