Abstract

An accurate understanding of material degradation mechanisms and the behavior of the key corrosion products of the materials of construction in nuclear systems is essential in minimizing radiation fields to ensure nuclear worker safety. There are no high-temperature data available on the precipitation constant (kp) of magnetite. Knowledge of this kinetic constant and its temperature dependence would allow for more accurate predictive modeling of the fouling of primary-side sections such as the steam generators. This work summarizes a modification of an experimental loop test section to study the kinetics of magnetite precipitation at temperatures relevant to Canada deuterium uranium (CANDU) reactor primary heat transport systems (PHTSs). A high-temperature, high-pressure flow-through loop was used to simulate the PHTS environment. A cooler test section representative of the temperature range in a typical CANDU-6 steam generator was used to induce supersaturation and precipitation down the length of the cooler. Work is ongoing to accurately quantify both the dissolved aqueous iron in the bulk coolant and the quantity of the precipitated magnetite on the pipe wall, with initial findings reported here.

References

1.
Guzonas
,
D.
, and
Qiu
,
L.
,
2005
, “
Predictive Model for Radionuclide Deposition Around the CANDU Heat Transport System
,”
Proceedings of the International Conference on Water Chemistry of Nuclear Reactor Systems
, San Francisco, CA, Oct. 11–14, pp.
2079
2086
.
2.
Nishimura
,
T.
, and
Kasahara
,
K.
,
1998
, “
Improvement of Crud Behavior Evaluation Code (ACE)
,”
Proceedings of the International Conference on Water Chemistry in Nuclear Power Plants
, Kashiwazaki, Japan, Oct. 13–16, pp.
310
314
.
3.
Balakrishnan
,
P. V.
, and
Allison
,
G. M.
,
1978
, “
Some In-Reactor Loop Experiments on Corrosion Product Transport Water Chemistry
,”
Nucl. Technol.
,
39
(
2
), pp.
105
120
.10.13182/NT78-A32072
4.
Mohajery
,
K.
,
Deydier de Pierrefeu
,
L.
, and
Lister
,
D. H.
,
2013
, “
The Dissolution Rate Constant of Magnetite in Water at Different Temperatures and pH Conditions
,”
Proceedings of the Nuclear Plant Chemistry Conference
, Paris, France, Sept. 24–27, pp.
1
31
.https://inis.iaea.org/records/66zp5-1hx15
5.
Palazhchenko
,
O. Y.
,
Ferguson
,
J. P.
, and
Cook
,
W. G.
,
2023
, “
Iron Hydrolysis and Lithium Uptake on Mixed-Bed Ion Exchange Resin at Alkaline pH
,”
Nucl. Eng. Technol.
,
55
(
10
), pp.
3665
3676
.10.1016/j.net.2023.06.032
6.
Sweeton
,
F. H.
, and
Baes
,
C. F.
,
1970
, “
The Solubility of Magnetite and Hydrolysis of Ferrous Ion in Aqueous Solutions at Elevated Temperatures
,”
J. Chem. Thermodyn.
,
2
(
4
), pp.
479
500
.10.1016/0021-9614(70)90098-4
7.
Tremaine
,
P. R.
, and
LeBlanc
,
J. F.
,
1980
, “
The Solubility of Magnetite and the Hydrolysis and Oxidation of Fe2+ in Water to 300 °C
,”
J. Solution Chem.
,
9
(
6
), pp.
415
442
.10.1007/BF00645517
8.
Dickinson
,
S.
,
Sims
,
H. E.
, and
Garbett
,
K.
,
2002
, “
Thermodynamic Modelling of PWR Coolant
,”
Proceedings of the International Conference on Water Chemistry in Nuclear Reactors Systems—Operation Optimisation and New Developments
, Avignon, France, Apr. 22–26, pp.
1
10
.
9.
Cook
,
W. G.
, and
Lister
,
D. H.
,
2004
, “
Some Aspects of Electrochemistry and Corrosion Mechanisms Influencing Flow Assisted Corrosion in CANDU Outlet Feeder Pipes
,”
Proceedings of the International Conference on Water Chemistry of Nuclear Reactor Systems
, San Francisco, CA, Oct. 11–14, pp.
1413
1422
.
10.
Palazhchenko
,
O. Y.
, and
Lister
,
D. H.
,
2016
, “
The Impact of Crud Behaviour on the Predictions of Activity Transport in CANDU-6 Reactors
,”
Proceedings of the 20th International Nuclear Plant Chemistry Conference
, Brighton, UK, Oct. 2–7, pp.
1419
1430
.
11.
Palazhchenko
,
O. Y.
,
Cook
,
W. G.
,
Martin
,
A. L.
, and
Taylor
,
D.
,
2020
, “
Heat Transfer Add-On to the UNB-CNER CANDU-6 PHT System Material Transport Model
,”
PowerPlant Chem.
,
22
(
6
), pp.
262
273
.
12.
Palazhchenko
,
O. Y.
,
Cook
,
W. G.
,
Martin
,
A. L.
, and
Lennox
,
J.
,
2021
, “
Update on Predicting RIHT Using the UNB-CNER CANDU-6 PHT System Model
,”
PPCHEM J.: Nucl. Chem. Cycle
,
23
(
3
), pp.
122
130
.
13.
Prapapithaya
,
W.
,
Palazhchenko
,
O.
,
Weerakul
,
S.
, and
Kongvarhodom
,
C.
,
2024
, “
The Study of the Temperature Dependent Magnetite Precipitation Constant From CANDU-6 Station Data
,”
Proceedings of the 43rd Annual Conference of the Canadian Nuclear Society
, Saskatoon, Canada, June 16–19.
14.
Wang
,
J.
,
2020
, “
Thermodynamic Equilibrium and Kinetic Fundamentals of Oxide Dissolution in Aqueous Solution
,”
Comput. Mater. Sci.
,
35
(
8
), pp.
898
921
.10.1557/jmr.2020.81
15.
Wang
,
C.
,
Li
,
H.
,
Khan
,
H. I.
,
Zeng
,
Z.
, and
Xu
,
H.
,
2021
, “
Deposition of Iron Oxides in Supercritical Water Reactor: A Review
,”
J. Inorg. Organomet. Polym. Mater.
,
31
(
6
), pp.
2262
2279
.10.1007/s10904-021-01908-3
16.
Hoang
,
T. A.
,
2022
, “
Fouling and Scaling Fundamentals
,”
Water-Formed Deposits: Fundamentals and Mitigation Strategies
,
Z.
Amjad
and
K. D.
Demadis
, eds.,
Elsevier
,
Amsterdam, Netherlands
, pp.
15
20
.
17.
Karpinski
,
P. H.
, and
Wey
,
J. S.
,
2002
, “
Chapter 6: Precipitation Processes
,”
Handbook of Industrial Crystallization
, 2nd ed.,
A. S.
Myerson
, ed.,
Butterworth-Heinemann
,
Oxford, UK
, pp.
147
155
.
18.
Epstein
,
N.
,
1983
, “
Thinking About Heat Transfer Fouling: A 5 × 5 Matrix
,”
Heat Transfer Eng.
,
4
(
1
), pp.
43
56
.10.1080/01457638108939594
19.
Epstein
,
N.
,
1998
, “
General Thermal Fouling Models
,”
Fouling Science and Technology
(NATO ASI Series, Vol.
145)
,
L. F.
Melo
,
T. R.
Bott
, and
C. A.
Bernardo
, eds.,
Springer, Dordrecht, Netherlands
, pp.
15
30
.
20.
Nancollas
,
G. H.
,
1979
, “
The Growth of Crystals in Solution
,”
Adv. Colloid Interface Sci.
,
10
(
1
), pp.
215
252
.10.1016/0001-8686(79)87007-4
21.
Tomson
,
M. B.
, and
Nancollas
,
G. H.
,
1978
, “
Mineralization Kinetics: A Constant Composition Approach
,”
Science
,
200
(
4345
), pp.
1059
1060
.10.1126/science.200.4345.1059
22.
Berger
,
F. P.
, and
Hau
,
F. L.
,
1977
, “
Mass Transfer in Turbulent Pipe Flow Measured by the Electrochemical Method
,”
Int. J. Heat Mass Transfer
,
20
(
11
), pp.
1185
1194
.10.1016/0017-9310(77)90127-2
23.
Tokar
,
E.
,
Matskevich
,
A.
,
Palamarchuk
,
M.
,
Parotkina
,
Y. A.
, and
Egorin
,
A.
,
2021
, “
Decontamination of Spent Ion Exchange Resins Contaminated With Iron-Oxide Deposits Using Mineral Acid Solutions
,”
Nucl. Eng. Technol.
,
53
(
9
), pp.
2918
2925
.10.1016/j.net.2021.03.022
You do not currently have access to this content.