Abstract

Neutron detection technology is one of the most commonly used techniques for nondestructive analysis of nuclear materials in nuclear safeguards and verification. During the neutron detection measurement of nuclear materials, high-energy cosmic rays will react with high atomic number substances in the outer layer of the detecting equipment, producing a significant number of secondary neutrons. These neutrons, after being moderated in the polyethylene layer, further interact with 3He tubes in the equipment, leading to an increase in the neutron counts and contributing to the background interference, which affects the detection limits and accuracy of nuclear material measurements. Based on the neutron background measurement experiments with typical neutron detection equipment, this paper begins with a preliminary demonstration of the interference effect of cosmic rays on the neutron counts of nuclear safeguards equipment. Monte Carlo method is used to qualitatively study the neutron yields of different energies of high-energy muons interacting with materials with different atomic numbers such as lead, bismuth and iron. In order to further quantify the relationship between the mass of the shielding materials and the neutron background counts produced by the cosmic ray reaction, this paper conducts a series of comparative experiments of the neutron background counts produced by the three shielding materials most commonly used in nuclear safeguards equipment: lead, iron, aluminum, and corrects the measurements based on the spatial efficiency of the device. The results show that, for the shielded nuclear safeguard neutron measurement equipment, higher-energy muons can generate more neutrons, and higher atomic number materials like lead shielding can produce larger neutron counts compared to iron and aluminum. After spatial efficiency corrections, a linear relationship between the mass of shielding materials and neutron counts was established. This linear relationship has been verified to be applicable to other types of neutron detection devices as well, and can be further used for estimating background counts in other neutron detection systems.

References

1.
Reilly
,
D.
,
Ensslin
,
N.
,
Smith
,
H.
, and
Kreiner
,
S.
,
1991
, “
Passive Nondestructive Assay of Nuclear Materials
,”
LANL
,
Washington, D.C
, Report No. LA-UR-90-732.https://www.nrc.gov/docs/ML0914/ML091470585.pdf
2.
Kaspar
,
T. C.
,
Lavender
,
C. A.
, and
Dibert
,
M. W.
,
2017
, “
Evaluation of Uranium-235 Measurement Techniques
,”
Pacific Northwest National Laboratory (PNNL)
,
Richland, WA
, Report No.
PNNL-26490
.https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-26490.pdf
3.
Bolzonella
,
M.
,
2023
, “
Benefits and Drawbacks of Non-Destructive Assay (NDA) for Nuclear Safeguards–An Overview
,”
Esarda Bull.
,
65
, pp.
63
73
.10.3011/ESARDA.IJNSNP.2023.6
4.
Croft
,
S.
, and
Favalli
,
A.
,
2021
, “
Review and Evaluation of the Spontaneous Fission Half-Lives of 238Pu, 240Pu, and 242Pu and the Corresponding Specific Fission Rates
,”
Nucl. Data Sheets
,
175
, pp.
269
287
.10.1016/j.nds.2021.06.003
5.
Weinmann-Smith
,
R. K.
,
Aucott
,
T. J.
,
Belian
,
A. P.
,
Broughton
,
D. P.
,
Frankl
,
M.
,
Hausladen
,
P. A.
,
Henzlova
,
D. C.
, et al.,
2024
, “
Passive Neutron Instrumentation and Applications
,”
Nondestructive Assay of Nuclear Materials for Safeguards and Security
,
Springer International Publishing
,
Cham
, pp.
483
584
.
6.
Sampson
,
T. E.
,
Kelley
,
T. A.
, and
Vo
,
D. T.
,
2003
, “
Application Guide to Gamma-Ray Isotopic Analysis Using the FRAM Software
,”
Los Alamos National Laboratory
,
Los Alamos, NM
, Report No.
LA-14018
.https://cdn.lanl.gov/files/app-to-isotopic-analysis-using-fram_06e9e.pdf
7.
Kouzes
,
R. T.
,
Siciliano
,
E. R.
,
Ely
,
J. H.
,
Keller
,
P. E.
, and
McConn
,
R. J.
,
2008
, “
Passive Neutron Detection for Interdiction of Nuclear Material at Borders
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
,
584
(
2–3
), pp.
383
400
.10.1016/j.nima.2007.10.026
8.
McCaffrey
,
J. P.
,
Shen
,
H.
,
Downton
,
B.
, and
Mainegr-Hing
,
E.
,
2007
, “
Radiation Attenuation by Lead and Nonlead Materials Used in Radiation Shielding Garments
,”
Med. Phys.
,
34
(
2
), pp.
530
537
.10.1118/1.2426404
9.
Crane
,
T. W.
, and
Baker
,
M. P.
,
1991
, “
Neutron Detectors
,”
Passive Nondestr. Assay Nucl. Mater.
,
13
, pp.
1
28
.
10.
Rubinstein
,
R. Y.
, and
Kroese
,
D. P.
,
2016
,
Simulation and the Monte Carlo Method
,
Wiley
,
Hoboken, NJ
.
11.
Hofstetter
,
K. J.
,
Henderson
,
B. C.
,
Gray
,
J. H.
, and
Huff
,
G. A.
,
1978
, “
Non-Destructive Assay of Leached Hulls in a Nuclear Fuel Reprocessing Plant
,”
Allied-General Nuclear Services
,
Barnwell, SC
, Report No. AGNS-1040-4; CONF-780522-2.https://inis.iaea.org/records/9a2yd-6xm31
12.
Croft
,
S.
, and
Bourva
,
L. C.
,
2003
, “
The Specific Total and Coincidence Cosmic-Ray-Induced Neutron Production Rates in Materials
,”
Nucl. Instrum. Methods Phys. Res. Sect. A
,
505
(
1–2
), pp.
536
539
.10.1016/S0168-9002(03)01140-9
13.
Cao
,
H.
, and
Koltick
,
D.
,
2024
, “
Cosmic Ray Induced Neutron Production in a Lead Target
,”
arxiv:2401.11280
.10.48550/arXiv.2401.11280
14.
Umeh
,
C. D.
,
Agwu
,
K. K.
,
Okoye
,
C. M. I.
,
Ahia
,
C. C.
, and
Ikegbu
,
G. O.
,
2021
, “
Characterization of the Radiation Shielding Properties of Fired Lead Sample for X-Ray Shielding Applications
,”
Prog. Nucl. Energy
,
137
, p.
103765
.10.1016/j.pnucene.2021.103765
15.
Manukovsky
,
K. V.
,
Ryazhskaya
,
O. G.
,
Sobolevsky
,
N. M.
, and
Yudin
,
A. V.
,
2016
, “
Neutron Production by Cosmic-Ray Muons in Various Materials
,”
Phys. At. Nucl.
,
79
(
4
), pp.
631
640
.10.1134/S106377881603011X
16.
Huege
,
T.
,
2019
, “
Radio Detection of Cosmic Rays with the Auger Engineering Radio Array
,”
EPJ Web of Conferences
, Paris, France, Oct. 8--12, pp.
1
4
.10.1051/epjconf/201921005011
17.
Hubert
,
G.
,
Regis
,
D.
,
Cheminet
,
A.
,
Gatti
,
M.
, and
Lacoste
,
V.
,.
2014
, “
Multi-Physics Modelling Contributions to Investigate the Atmospheric Cosmic Rays on the Single Event Upset Sensitivity Along the Scaling Trend of CMOS Technologies
,”
Radiat. Prot. Dosim.
,
161
(
1–4
), pp.
290
294
.10.1093/rpd/ncu003
18.
Ashman
,
J.
,
Badelek
,
B.
,
Baum
,
G.
,
Beaufays
,
J.
,
Bee
,
C. P.
,
Benchouk
,
C.
,
Bird
,
I. G.
, et al.,
1989
, “
An Investigation of the Spin Structure of the Proton in Deep Inelastic Scattering of Polarised Muons on Polarised Protons
,”
Nucl. Phys. B
,
328
(
1
), pp.
1
35
.10.1016/0550-3213(89)90089-8
19.
Abd
,
El-Hameed
,
A. M.
,
2022
, “
Radiation Effects on Composite Materials Used in Space Systems: A Review
,”
NRIAG J. Astron. Geophys.
,
11
(
1
), pp.
313
324
.10.1080/20909977.2022.2079902
20.
Agostinelli
,
S.
,
Allison
,
J.
,
Amako
,
K.
,
Apostolakis
,
J.
,
Araujo
,
H.
,
Arce
,
P.
,
Asai
,
M.
, et al.,
2003
, “
GEANT4—A Simulation Toolkit
,”
Nucl. Instrum. Methods Phys. Res. Sect. A
,
506
(
3
), pp.
250
303
.10.1016/S0168-9002(03)01368-8
You do not currently have access to this content.