Abstract

Metals used in aqueous environments where high temperatures and pressures are present are susceptible to corrosion. This is the case for nuclear power plants, especially CANDUTM reactors, where the liquid water systems can reach over 300 °C at pressures well above 101.325 kPa (1 atm). In such situations, failure to control corrosion has economic and safety consequences. To extend corrosion modeling tools, such as Pourbaix diagrams, to harsh aqueous conditions, there is a need for experimental thermochemical data performed at elevated temperatures. This is particularly true for metal and alloy systems where such information is unavailable or unreliable. A relatively simple approach to obtaining temperature dependent thermodynamic properties is the investigation of solid–liquid phase, or solubility, equilibria. However, this requires specially designed instrumentation that can withstand harsh temperatures and extreme pH conditions, while providing accurate data. In this work, an apparatus developed for super-ambient highly acidic and alkaline solubility experiments is presented. Solubility measurements were made in the zinc oxide system, which has been extensively studied. Using these equilibrium data and comparing to the literature, allowed the instrumentation and analysis process to be validated. In situ pH measurements using a constant volume, batch reactor system are described along with a brief presentation of the ZnO dissolution equilibria results at 85 °C (358.15 K).

References

1.
Palazhchenko
,
O.
, and
Kaye
,
M. H.
,
2024
, “
Investigation of metal-H2O Systems at Elevated Temperatures: Part II. SnO2(s) Solubility Data and New Sn Pourbaix Diagrams at 298.15 K and 358.15 K
,”
ASME J of Nuclear Rad Sci.
, (submitted).10.1115/1.4066340
2.
Palazhchenko
,
O.
,
2012
, “
Pourbaix Diagrams at Elevated Temperatures: A Study of Zn and Sn
,” Master's thesis,
University of Ontario Institute of Technology
,
Oshawa, ON
.
3.
Khodakovskyi
,
I. L.
, and
Yelkin
,
A.
,
1975
, “
Measurement of Solubility of Zincite in Aqueous NaOH at 100, 150, and 200 °C
,”
Geokhimiya
,
10
, pp.
1490
1498
.
4.
Ziemniak
,
S. E.
,
Jones
,
M. E.
, and
Combs
,
K. E. S.
,
1992
, “
Zinc(II) Oxide Solubility and Phase Behavior in Aqueous Sodium Phosphate Solutions at Elevated Temperatures
,”
J. Solution Chem.
,
21
(
11
), pp.
1153
1176
.10.1007/BF00651861
5.
Hanzawa
,
Y.
,
Hiroishi
,
D.
,
Matsuura
,
C.
,
Ishigure
,
K.
,
Nagao
,
M.
, and
Haginuma
,
M.
,
1997
, “
Hydrolysis of Zinc Ion and Solubility of Zinc Oxide in High-Temperature Aqueous Systems
,”
Nucl. Sci. Eng.
,
127
(
3
), pp.
292
299
.10.13182/NSE97-03
6.
Wesolowski
,
D. J.
,
Bénézeth
,
P.
, and
Palmer
,
D. A.
,
1998
, “
ZnO Solubility and Zn2+ Complexation by Chloride and Sulfate in Acidic Solutions to 290 °C With in-Situ pH Measurement
,”
Geochim. Cosmochim. Acta
,
62
(
6
), pp.
971
984
.10.1016/S0016-7037(98)00039-8
7.
Bénézeth
,
P.
,
Palmer
,
D. A.
,
Wesolowski
,
D. J.
, and
Xiao
,
C.
,
2002
, “
New Measurements of the Solubility of Zinc Oxide From 150 to 350 °C
,”
J. Solution Chem.
,
31
(
12
), pp.
947
973
.10.1023/A:1021866025627
8.
Wesolowski
,
D. J.
,
Ziemniak
,
S. E.
,
Anovitz
,
L. M.
,
Machesky
,
M. L.
,
Bénézeth
,
P.
, and
Palmer
,
D. A.
,
2004
, “
Solubility and Surface Absorption Characteristics of Metal Oxides
,”
Aqueous Systems at Elevated Temperatures and Pressures: Physical Chemistry in Water, Steam and Hydrothermal Solutions
, 1st ed.,
Elsevier Academic Press
,
Amsterdam
, pp.
493
595
.
9.
Beverskog
,
B.
, and
Puigdomenech
,
I.
,
1997
, “
Revised Pourbaix Diagrams for Zinc at 25-300 °C
,”
Corros. Sci.
,
39
(
1
), pp.
107
114
.10.1016/S0010-938X(97)89246-3
10.
Bénézeth
,
P.
,
Palmer
,
D. A.
, and
Wesolowski
,
D. J.
,
1998
, “
Potentiometric Studies of Zinc Oxide Solubility to High Temperatures
,”
Goldschmidt Conference
,
Toulouse, France
, Aug. 30–Sept. 3, pp.
145
146
.https://rruff.info/doclib/MinMag/Volume_62A/62A-1-145.pdf
11.
Grenthe
,
I.
, and
Wanner
,
H.
,
2000
, “
Guidelines for Extrapolating to Zero Ionic Strength
,” OECD Nuclear Energy Agency, Issy-les-Moulineaux, France, Report No.
TBD-2
.https://www.oecd-nea.org/jcms/pl_37492/tdb-2-guidelines-for-the-extrapolation-to-zero-ionic-strength?details=true#:~:text=NEA%20(2020),%20TDB-2:%20Guidelines%20for%20the%20extrapolation%20to
12.
Bourcier
,
W. L.
, and
Barnes
,
H. L.
,
1987
, “
Ore Solution Chemistry; VII, Stabilities of Chloride and Bisulfide Complexes of Zinc to 350 °C
,”
Econ. Geol.
,
82
(
7
), pp.
1839
1863
.10.2113/gsecongeo.82.7.1839
13.
Shock
,
E. L.
,
Sassani
,
D. C.
,
Willis
,
M.
, and
Sverjensky
,
D. A.
,
1997
, “
Inorganic Species in Geologic Fluids: Correlations Among Standard Molal Thermodynamic Properties of Aqueous Ions and Hydroxide Complexes
,”
Geochim. Cosmochim. Acta
,
61
(
5
), pp.
907
950
.10.1016/S0016-7037(96)00339-0
14.
Kriksunov
,
L. B.
, and
Macdonald
,
D. D.
,
1995
, “
Advances in Measuring Chemistry Parameters in High Temperature Aqueous Systems
,”
Physical Chemistry of Aqueous Systems: Meeting the Needs of Industry
,
H. G.
White
,
J. V.
Sengers
,
N. B.
Neumann
, and
J. C.
Bellows
, eds.,
Begell House
,
New York
, pp.
432
440
.
You do not currently have access to this content.