Abstract

The term “Molten salt reactors” refers to a broad class of nuclear reactors that use a molten alkali-halide salt as the primary coolant fluid. This paper pertains to thermal spectrum liquid fuel molten fluoride salt reactors with graphite moderator (MSRs), where the molten salt also dissolves the actinide fuel. Xenon isotope 135,135Xe, is a fission product that is produced during nuclear fission energy production, and it acts as a neutron poison. Due to the circulating nature of the fuel salt in MSRs, there is a qualitative difference in the behavior of 135Xe in an MSR compared to a solid fueled reactor. Some of the 135Xe produced in fission may end up in the pore space of the porous graphite moderator used in an MSR. This paper examines the transfer and storage of 135Xe in MSR graphite. Prior publications are reviewed, the porosity of the MSR graphite is examined, governing equations are detailed, film layer production and destruction are discussed, the graphite/salt interface is explored, transport pathways are considered, transfer processes are exposited, the effect of charged species is examined, the solubility of noble gases in molten fluoride salts is examined, the mass diffusion coefficient in molten salts is explored, and the calculation of mass transfer coefficients is described.

References

1.
Lee
,
J. J.
,
Arregui-Mena
,
J. D.
,
Contescu
,
C. I.
,
Burchell
,
T. D.
,
Katoh
,
Y.
, and
Loyalka
,
S. K.
,
2020
, “
Protection of Graphite From Salt and Gas Permeation in Molten Salt Reactors
,”
J. Nucl. Mater.
,
534
, p.
152119
.10.1016/j.jnucmat.2020.152119
2.
Robertson
,
R.
,
1965
, “
ORNL-TM-0728: MSRE Design and Operations Report
,”
Oak Ridge, TN
,
Oak Ridge National Laboratory
,
Report No. ORNL-TM-0728
, p.
536
.
3.
McCoy
,
H. E.
, and
Weir
,
J. R.
,
1967
, “
ORNL-TM-1854: Materials Development for Molten-Salt Breeder Reactors
,”
Report No. ORNL-TM-1854.
4.
Moore
,
J.
,
Godfrey
,
T.
, and
McElroy
,
D.
,
1964
, “
ORNL-P-150: Thermal Properties of Grade CGB Graphite
,”
Oak Ridge, TN
,
Oak Ridge National Laboratory
,
Report No. ORNL-P-150.
5.
Malinauskas
,
A.
,
Rutherford
,
J.
, and
Evans
,
R.
,
1967
, “
ORNL-4148: Gas Transport in MSRE Moderator Graphite. Part 1: Review of Theory and Counter Diffusion Experiments
,”
Oak Ridge National Laboratory
,
Report No. ORNL-4148.
6.
Ghajar
,
A. J.
, and
Cengel
,
Y. A.
,
2015
,
Heat and Mass Transfer: Fundamentals and Applications
, 5th ed.,
McGraw-Hill Education
,
New York
.
7.
Cussler
,
E.
,
2007
,
Diffusion: Mass Transfer in Fluid Systems
, 3rd ed.,
Cambridge University Press
,
Cambridge, UK
.
8.
Moynihan
,
C. T.
,
1971
, “
Mass Transport in Fused Salts
,”
Ionic Interactions: From Dilute Solutions to Fused Salts
,
S.
Petrucci
, ed.,
Academic Press
,
New York
, Chap. 5, pp.
261
384
.
9.
Vrentas
,
J. S.
, and
Vrentas
,
C. M.
,
2016
,
Diffusion and Mass Transfer
,
CRC Press
,
Boca Raton, FL
.
10.
Dolan
,
T.
,
2017
,
Molten Salt Reactors and Thorium Energy
,
Woodhead Publishing
,
Kidlington, UK
.
11.
Lamarsh
,
J. R.
, and
Baratta
,
A. J.
,
2001
,
Introduction to Nuclear Engineering
, 3rd ed.,
Prentice Hall
,
Upper Saddle River, NJ
.
12.
Price
,
T. J.
,
Chvala
,
O.
, and
Taylor
,
Z.
,
2019
, “
Molten Salt Reactor Xenon Analysis: Review and Decomposition
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
5
(
4
), p.
041210
.10.1115/1.4043813
13.
Price
,
T. J.
,
Chvala
,
O.
, and
Taylor
,
Z.
,
2020
, “
Xenon Behavior in Molten Salt Reactor Graphite
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
6
(
4
), p.
041303
.10.1115/1.4046356
14.
Watson
,
G. M.
, and
Evans
,
R. B.
, III.
,
1962
, “
ORNL-TM-262: Xenon Diffusion in Graphite: Effects of Xenon Absorption in Molten Salt Reactors Containing Graphite
,”
Oak Ridge, TN
,
Oak Ridge National Laboratory
,
Report No. ORNL-TM-262
, p.
27
.
15.
Cabage
,
B. H.
,
2020
, “
MSRE’s 50th of Work
,” accessed Apr. 22, 2020, https://www.ornl.gov/news/msres-50th
16.
Kedl
,
R.
, and
Houtzeel
,
A.
,
1967
, “
ORNL-4069: Development of a Model for Computing Xe-135 Migration in the MSRE
,”
Oak Ridge, TN
,
Oak Ridge National Laboratory
,
Report No. ORNL-4069.
17.
Malinauskas
,
A. P.
,
Rutherford
,
J. L.
, and
Evans
,
R. B.
, III.
,
1967
, “
ORNL-4148: Gas Transport in MSRE Moderator Graphite. I. Review of Theory and Counterdiffusion Experiments
,”
Oak Ridge, TN
,
Oak Ridge National Laboratory
,
Report No. ORNL-4148
, p.
39
.
18.
Evans
,
R. B.
, III
,
Rutherford
,
J. L.
, and
Malinauskas
,
A. P.
,
1969
, “
ORNL-4380: Gas Transport in MSRE Moderator Graphite; II. Effects of Impregnation; III. Variation of Flow Properties
,”
Oak Ridge, TN
,
Oak Ridge National Laboratory
,
Report No. ORNL-4380
, p.
56
.
19.
Engel
,
J. R.
, and
Steffy
,
R. C.
,
1971
, “
ORNL-TM-3464: Xenon Behavior in the Molten Salt Reactor Experiment
,”
Oak Ridge, TN
,
Oak Ridge National Laboratory
,
Report No. ORNL-TM-3464
, p.
112
.
20.
Kedl
,
R. J.
,
1967
, “
ORNL-TM-1810: A Model for Computing the Migration of Very Short Lived Nobel Gases Into MSRE Graphite
,”
Oak Ridge, TN
,
Oak Ridge National Laboratory
,
Report No. ORNL-TM-1810
, p.
26
.
21.
Greenstreet
,
W. L.
,
1968
, “
ORNL-4327: Mechanical Properties of Artificial Graphites - A Survey Report
,”
Oak Ridge, TN
,
Oak Ridge National Laboratory
,
Report No. ORNL-4327
, p.
49
.
22.
Kasten
,
P. R.
,
Bettis
,
E. S.
,
Cook
,
W. H.
,
Eatherly
,
W. P.
,
Holmes
,
D. K.
,
Kedl
,
R. J.
,
Kennedy
,
C. R.
, et al.,
1969
, “
ORNL-TM-2316: Graphite Behavior and Its Effects on MSBR Performance
,”
Oak Ridge, TN
,
Oak Ridge National Laboratory
,
Report No. ORNL-TM-2316.
23.
Scott
,
D.
, and
Eatherly
,
W. P.
,
1969
, “
Graphite and Xenon Behavior and Their Influence on Molten-Salt Reactor Design
,”
Nucl. Appl. Technol.
,
8
(
2
), pp.
179
189
.
24.
Grimes
,
W. R.
,
1965
, “
ORNL-3789: Reactor Chemistry Division Annual Progress Report for Period Ending January 31, 1965
,”
Oak Ridge, TN
,
Oak Ridge National Laboratory
,
Report No. ORNL-3789
, p.
354
.
25.
Evans
,
R. B.
, III
,
Rutherford
,
J. L.
, and
Malinauskas
,
A. P.
,
1969
, “
ORNL-4389: Gas Transport in MSRE Moderator Graphite. II. Effects of Impregnation. III. Variation of Flow Properties
,”
Oak Ridge, TN
,
Oak Ridge National Laboratory
,
Report No. ORNL-4389
, p.
56
.
26.
Rall
,
C. G.
,
Hamontre
,
H. C.
, and
Taliaferro
,
D. B.
,
1954
, “
BM-RI-5025: Determination of Porosity by a Bureau of Mines Method: A List of Porosities of Oil Sands. (Revision of Report of Investigations 4548)
,”
Bartlesville, OK
,
Bureau of Mines
,
Report No. BM-RI-5025
, p.
32
.
27.
Dullien
,
F. A. L.
, and
Brenner
,
H.
,
2012
,
Porous Media: Fluid Transport and Pore Structure
,
Academic Press
,
San Deigo, CA
, p.
574
.
28.
Washburn
,
E. W.
, and
Bunting
,
E. N.
,
1922
, “
Porosity: VI. Determination of Porosity by the Method of Gas Expansion
,”
J. Am. Ceram. Soc.
,
5
(
2
), pp.
112
130
.10.1111/j.1151-2916.1922.tb17640.x
29.
Nuhfer
,
E. B.
,
1979
, “
Determination of Density and Porosity
,”
Procedures for Petrophysical, Mineralogical and Geochemical Characterization of Fine-Grained Clastic Rocks and Sediments
, Morgantown, WV, pp.
11
23
.
30.
Briggs
,
R. B.
,
1964
, “
ORNL-3708: Molten-Salt Reactor Program Semiannual Progress Report for Period Ending
,”
Oak Ridge, TN
,
Oak Ridge National Laboratory
,
Report No. ORNL-5132
, p.
395
.
31.
Kedl
,
R. J.
,
1970
, “
ORNL-TM-3229: Fluid Dynamic Studies of the Molten-Salt Reactor Experiment (MSRE) Core
,”
Oak Ridge, TN
,
Oak Ridge National Laboratory
,
Report No. ORNL-TM-3229
, p.
33
.
32.
Blander
,
M.
,
Grimes
,
W. R.
,
Smith
,
N. V.
, and
Watson
,
G. M.
,
1959
, “
Solubility of Noble Gases in Molten Fluorides. II. In the Lif-NaF-LF Eutectic Mixtures
,”
J. Phys. Chem.
,
63
(
7
), pp.
1164
1167
.10.1021/j150577a033
33.
McCoy
,
H. E.
, and
McNabb
,
B.
,
1972
, “
ORNL-TM-4174: Postirradiation Examination of Materials From the MSRE
,”
Oak Ridge, TN
:
Oak Ridge National Laboratory
,
Report No. ORNL-TM-4174
, p.
98
.
34.
Dye
,
R. F.
, and
Dallavalle
,
J. M.
,
1958
, “
Diffusion of Gases in Porous Media
,”
Ind. Eng. Chem.
,
50
(
8
), pp.
1195
1200
.10.1021/ie50584a046
35.
Liu
,
Z.
,
2018
,
Multiphysics in Porous Materials
,
Springer
,
New York
.
36.
LaBolle
,
E. M.
,
Quastel
,
J.
, and
Fogg
,
G. E.
,
1998
, “
Diffusion Theory for Transport in Porous Media: Transition-Probability Densities of Diffusion Processes Corresponding to Advection-Dispersion Equations
,”
Water Resour. Res.
,
34
(
7
), pp.
1685
1693
.
37.
Reible
,
D. D.
,
1998
,
Fundamentals of Environmental Engineering
,
Lewis Publishers
,
Boca Raton, FL
, p.
544
.
38.
Baehr
,
H. D.
, and
Stephan
,
K.
,
2011
,
Heat and Mass Transfer
,
Springer
,
Berlin, Heidelberg
.
39.
Alexander
,
L. G.
,
Carter
,
W. L.
,
Craven
,
C. W.
,
Janney
,
D. B.
,
Kerlin
,
T. W.
, and
Van Winkle
,
R.
,
1965
, “
ORNL-TM-1060: Molten Salt Converter Reactor. Design Study and Power Cost Estimates for a 1000 MWe Station
,”
Oak Ridge, TN
,
Oak Ridge National Laboratory
,
Report No. ORNL-TM-1060.
40.
Price
,
T. J.
,
Chvala
,
O.
, and
Taylor
,
Z.
,
2020
, “
A Review of Circulating Voids and Gaseous Fission Product Behavior in Molten Salt Reactors
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
6
(
4
), p.
041302
.10.1115/1.4046258
41.
Wu
,
J.
,
Guo
,
C.
,
Cai
,
X.
,
Yu
,
C.
,
Zou
,
C.
,
Han
,
J.
, and
Chen
,
J.
,
2017
, “
Flow Effect on 135I and 135Xe Evolution Behavior in a Molten Salt Reactor
,”
Nucl. Eng. Des.
,
314
, pp.
318
325
.10.1016/j.nucengdes.2017.01.019
42.
Butt
,
H. J.
,
Graf
,
K.
, and
Kappl
,
M.
,
2013
,
Physics and Chemistry of Interfaces
,
Wiley-VCH
,
Weinheim, GR
.
43.
Engel
,
J. R.
, and
Haubenreich
,
P. N.
,
1962
, “
ORNL-TM-378: Temperatures in the MSRE Core During Steady-State Power Operation
,”
Oak Ridge, TN
,
Oak Ridge National Laboratory
,
Report No. ORNL-TM-378.
44.
Price
,
T.
,
Chvala
,
O.
, and
Bereznai
,
G.
,
2020
, “
A Dynamic Model of Xenon Behavior in the Molten Salt Reactor Experiment
,”
Ann. Nucl. Energy
,
144
, p.
107535
.10.1016/j.anucene.2020.107535
45.
Miller
,
J. W.
,
1961
, “
ORNL-CF-61-5-62: Xenon Poisoning in Molten Salt Reactors
,”
Oak Ridge, TN
,
Oak Ridge National Laboratory
,
Report No. ORNL-CF-61-5-62.
46.
Conway
,
B. E.
,
2015
, “
Solid-Solution Interfaces: Electrical Double-Layer and Ion Adsorption Behavior
,”
Encyclopedia of Surface and Colloid Science
, 3rd ed., Taylor & Francis, Boca Raton, FL, pp.
6729
6751
.
47.
Grimes
,
W.
,
Smith
,
N.
, and
Watson
,
G.
,
1958
, “
Solubility of Noble Gases in Molten Fluorides. I. In Mixtures of NaF-ZrF4 (53-47 Mole %)
,”
J. Phys. Chem.
,
62
(
7
), pp.
862
866
.10.1021/j150565a024
48.
Gerrard
,
W.
,
1976
,
Solubility of Gases and Liquids: A Graphic Approach, Data - Causes - Prediction
,
Plenum Press
,
New York
.
49.
Watson
,
G. M.
,
Evans
,
R. B.
, III
,
Grimes
,
W. R.
, and
Smith
,
N. V.
,
1962
, “
Solubility of Noble Gases in Molten Fluorides. In LiF-BeF2
,”
J. Chem. Eng. Data
,
7
(
2
), pp.
285
287
.10.1021/je60013a038
50.
Gerrard
,
1980
,
Gas Solubilities: Widespread Applications
,
Pergamon Press
,
Oxford, UK
.
51.
Bockris
,
J. O. M.
, and
Reddy
,
A. K. N.
,
1998
,
Modern Electrochemistry, Volume 1, Ionics
,
Kluwer Academic Publishers
,
New York
.
52.
Brodkey
,
R. S.
, and
Hershey
,
H. C.
,
1988
,
Transport Phenomena: A Unified Approach
,
McGraw-Hill
,
New York
.
53.
Sitaraman
,
R.
,
Ibrahim
,
S. H.
, and
Kuloor
,
N. R.
,
1963
, “
A Generalized Equation for Diffusion in Liquids
,”
J. Chem. Eng. Data
,
8
(
2
), pp.
198
201
.10.1021/je60017a017
54.
Bejan
,
A.
, and
Kraus
,
A. D.
,
2003
,
Heat Transfer Handbook
,
Wiley
,
New York
, p.
1479
.
55.
Rohsenow
,
W. M.
,
Hartnett
,
J. P.
, and
Cho
,
Y. I.
,
1998
,
Handbook of Heat Transfer
,
McGraw-Hill
,
New York
, p.
1520
.
56.
Winterton
,
R. H. S.
,
1998
, “
Where Did the Dittus and Boelter Equation Come From?
,”
Int. J. Heat Mass Transfer
,
41
(
4–5
), pp.
809
810
.10.1016/S0017-9310(97)00177-4
57.
Tosun
,
I.
,
2007
,
Modeling in Transport Phenomena: A Conceptual Approach
,
Elsevier
,
Amsterdam, The Netherlands
, p.
628
.
You do not currently have access to this content.