Abstract
Canadian Nuclear Laboratories (CNL) is collaborating in the Joint European Canadian Chinese Development of Small Modular Reactor Technology (ECC-SMART) project to understand the corrosion behavior of the most promising candidate materials for a future supercritical water-cooled – small modular reactor (SCW-SMR). To support this aim and the project's requirements, the present study develops a costing method for assessing the impact of corrosion in a power generation cost model. This cost model builds on a methodological study of various corrosion engineering economics topics in nuclear power generation, such as the expected fuel cladding corrosion phenomena in a supercritical water-cooled reactor (SCWR) concept and estimating the main corrosion costs categories. This understanding is incorporated in a power generation cost model that applies the revenue requirements approach to life cycle costing (LCC). The LCC includes the main corrosion cost categories and a reliability factor used in assessing power generation costs, the costing of chemical species for controlling corrosion, and the present worth of revenue requirements. The method and model, therefore, provide a framework for understanding the kind of information available and needed for taking economical preventative corrosion measures for the current generation of water-cooled reactors and advanced reactors, such as the SCWR.