Abstract

A plate-type nuclear fuel consisting of a solid monolithic foil of U-10 wt. %Mo is under development for use in the United States' high-performance research reactors. In support of developing this fuel, the fuel has been fabricated for the first time by a commercial fuel vendor and subsequently irradiated in a test reactor. This provides an opportunity to evaluate postirradiation mechanical properties of the commercially fabricated fuel. Four-point bend testing was conducted on the irradiated U-10Mo samples to generate the fuel material properties, including the modulus of elasticity and the bending strength. Although the material behaves in a brittle manner due to the accumulated porosity, a general trend of strength and modulus reduction was found as fission density increases. The data produced was evaluated using both Weibull statistics and a modulus degradation model with recommendations provided.

References

1.
Snelgrove
,
J. L.
,
Hofman
,
G. L.
,
Meyer
,
M. K.
,
Trybus
,
C. L.
, and
Wiencek
,
T. C.
,
1997
, “
Development of Very-High-Density Low-Enriched-Uranium Fuels
,”
Nucl. Eng. Des.
,
178
(
1
), pp.
119
126
.10.1016/S0029-5493(97)00217-3
2.
Joshi
,
V. V.
,
Nyberg
,
E. A.
,
Lavender
,
C. A.
,
Paxton
,
D.
,
Garmestani
,
H.
, and
Burkes
,
D. E.
,
2015
, “
Thermomechanical Process Optimization of U-10 wt% Mo – Part 1: High-Temperature Compressive Properties and Microstructure
,”
J. Nucl. Mater.
,
465
, pp.
805
813
. 10.1016/j.jnucmat.2013.10.065
3.
Joshi
,
V. V.
,
Nyberg
,
E. A.
,
Lavender
,
C. A.
,
Paxton
,
D.
, and
Burkes
,
D. E.
,
2015
, “
Thermomechanical Process Optimization of U—10 wt%Mo – Part 2: The Effect of Homogenization on the Mechanical Properties and Microstructure
,”
J. Nucl. Mater.
,
465
, pp.
710
718
.10.1016/j.jnucmat.2015.07.005
4.
Van Den Berghe
,
S.
, and
Lemoine
,
P.
,
2014
, “
Review of 15 Years of High-Density Low-Enriched UMo Dispersion Fuel Development for Research Reactors in Europe
,”
Nucl. Eng. Technol.
,
46
(
2
), pp.
125
146
.10.5516/NET.07.2014.703
5.
Leenaers
,
A.
,
Wight
,
J.
,
Van Den Berghe
,
S.
,
Ryu
,
H. J.
, and
Valery
,
J. F.
,
2020
, “
5.14 – U-Al Based Fuel System
,”
Compr. Nucl. Mater.
,
5
, pp.
464
484
.10.1016/B978-0-12-803581-8.11606-6
6.
Leenaers
,
A.
,
Wight
,
J.
,
Van Den Berghe
,
S.
,
Ryu
,
H. J.
, and
Valery
,
J. F.
,
2020
, “
5.15 – U-Si Based Fuel System
,”
Compr. Nucl. Mater.
,
5
, pp.
485
498
.10.1016/B978-0-12-803581-8.11607-8
7.
Leenaers
,
A.
,
Wight
,
J.
,
Van Den Berghe
,
S.
,
Ryu
,
H. J.
, and
Valery
,
J. F.
,
2020
, “
5.16 – U-Mo Based Fuel System
,”
Compr. Nucl. Mater.
,
5
, pp.
499
530
.10.1016/B978-0-12-803581-8.11775-8
8.
Koziol
,
A.
,
Yano
,
K.
,
Schemer-Kohrn
,
A.
,
Soulami
,
A.
,
Joshi
,
V. V.
,
Briggs
,
S. A.
, and
Kautz
,
E. J.
,
2023
, “
Microstructure and Microchemistry Changes at U-10Mo Fuel/AA6061 Cladding Interfaces With Varying Hot Isostatic Pressing Conditions
,”
J. Nucl. Mater.
,
585
, p.
154597
.10.1016/j.jnucmat.2023.154597
9.
Frazier
,
W. E.
,
Kalia
,
K.
,
Wang
,
C.
,
Choi
,
K. S.
,
Field
,
D. P.
,
Hu
,
S.
,
Soulami
,
A.
, and
Joshi
,
V. V.
,
2023
, “
An Integrated Simulation of Multiple-Pass U-10Mo Alloy Hot Rolling and Static Recrystallization
,”
Metall. Mater. Trans. A
,
54
(
9
), pp.
3461
3475
.10.1007/s11661-023-07077-x
10.
Schuessler
,
B. J.
,
Field
,
D. P.
,
Overman
,
N. R.
, and
Joshi
,
V. V.
,
2021
, “
The Effect of Homogenization Heat Treatment on the Texture Evolution in U-10Mo Alloy
,”
Metall. Mater. Trans. A Phys. Metall. Mater. Sci.
,
52
(
9
), pp.
3871
3879
.10.1007/s11661-021-06349-8
11.
Marshall
,
M. A.
,
Smith
,
J.
,
Scott
,
C.
,
Cottle
,
D.
, and
Jesse
,
C.
,
2019
, “
Mid-Irradiation Experiment Examinations of Monolithic U-10Mo Fuel MP-1 Irradiation Tests at the Advanced Test Reactor
,”
Trans. Am. Nucl. Soc.
,
121
, pp.
696
699
.https://www.ans.org/pubs/transactions/article-47661/
12.
Marshall
,
M. A.
,
Glagolenko
,
I.
,
Meacham
,
N. D.
,
Choe
,
D. O.
,
Gilbreath
,
P. E.
,
Hawkes
,
G. L.
,
Crawford
,
D. S.
,
Rosvall
,
E. S.
, and
Wiest
,
J. D.
,
2019
, “Qualification of U-10Mo Base Fuel Over Design Envelop of U.S. High Performance Research Reactor Using Mini-Plate Irradiation Testing in ATR,”
Trans. Am. Nucl. Soc.
,
120
, pp.
249
252
.https://www.ans.org/pubs/transactions/article-45276/
13.
Smith
,
J. A.
,
Jesse
,
C. J.
,
Hanson
,
W. A.
,
Scott
,
C. L.
, and
Cottle
,
D. L.
,
2023
, “
Channel Gap Measurements of Irradiated Plate Fuel and Comparison With Post-Irradiation Plate Thickness
,”
Nucl. Eng. Technol.
,
55
(
6
), pp.
2195
2205
.10.1016/j.net.2023.02.034
14.
Rabin
,
B.
,
Meyer
,
M.
,
Cole
,
J.
,
Glagolenko
,
I.
,
Jones
,
W.
,
Jue
,
J.-F.
,
Keiser
,
D.
, Jr.
, et al.,
2020
, “
Preliminary Report of U-Mo Monolithic Fuel for Research Reactors
,”
Idaho National Laboratory
,
Idaho Falls, ID
, Report No. INL/EXT-17-40975 Revision 4.
15.
Ozaltun
,
H.
,
Roh
,
H. S.
, and
Mohamed
,
W.
,
2022
, “
Overview of the Base Model for the Parametric Sensitivity Studies Specific to Performance Assessments of U-Mo Fuel Plates
,”
ASME
Paper No. IMECE2022-93718.10.1115/IMECE2022-93718
16.
Mohamed
,
W.
,
Ozaltun
,
H.
, and
Roh
,
H. S.
,
2022
, “
Summary of Property-Related Parameters and Its Effect on the Simulated Thermo-Mechanical Behavior of U-10Mo Monolithic Fuel Plate
,”
ASME
Paper No. POWER2022-86012.10.1115/POWER2022-86012
17.
Waldron
,
M. B.
,
Burnett
,
R. S.
, and
Pugh
,
S. F.
, 1 July
1958
, “
The Mechanical Properties of Uranium-Molybdenum Alloys
,” United Kingdom Atomic Energy Authority, Research Group: Atomic Energy Research Establishment,
Harwell
,
Berks, UK
, Report No. Report: AERE-M/R-2554.
18.
Kalashnikov
,
V. V.
,
Titova
,
V. V.
,
La. Sergeev
,
G.
, and
Samoilov
,
A. G.
,
1959
, “
Uranium-Molybdenum Alloys in Reactor Construction
,”
Sov. J. At. Energy
,
5
(
4
), pp.
1315
1325
.10.1007/BF02276888
19.
Burkes
,
D. E.
,
Prabhakaran
,
R.
,
Hartmann
,
T.
,
Jue
,
J. F.
, and
Rice
,
F. J.
,
2010
, “
Properties of DU-10 wt% Mo Alloys Subjected to Various Post-Rolling Heat Treatments
,”
Nucl. Eng. Des.
,
240
(
6
), pp.
1332
1339
.10.1016/j.nucengdes.2010.02.008
20.
Burkes
,
D. E.
,
Prabhakaran
,
R.
,
Jue
,
J. F.
, and
Rice
,
F.
,
2009
, “
Mechanical Properties of DU-xMo Alloys With x=7 to 12 Weight Percent
,”
Metall. Mater. Trans. A: Phys. Metall. Mater. Sci.
,
40
(
5
), pp.
1069
1079
.10.1007/s11661-009-9805-5
21.
Mihalczo
,
J. T.
,
1962
, “
Reactivity Calibations and Fission-Rate Distributions in an Unmoderated, Unreflected U-Mo Alloy Research Reactor
,”
Oak Ridge National Laboratory
,
Oak ridge, TN
, Report No. ORNL-TM-189.
22.
Saller
,
H. A.
,
Dickerson
,
R. F.
, and
Murr
,
W. E.
, 25 June
1956
, “
Uranium Alloys for High-Temperature Application
,”
Battelle Memorial Institute
,
Columbus, OH
, Report No. BMI-1098.
23.
Nominee
,
A. M.
,
Bedere
,
D.
,
Miannay
,
D.
, and
Burke
,
J. J.
, 12 Feb
1974
, “
Influence of Physio-Chemical Parameters on the Mechanical Properties of Some Isotropic Uranium Alloys
,”
Conference on Physical Metallurgy of Uranium Alloys
,
Brook Hill Publishing Co.
,
Chestnut Hill, MA; Vail, CO
, Feb. 12, pp.
657
700
.
24.
Hills
,
R. F.
,
Butcher
,
B. R.
, and
Howlett
,
B. W.
,
1964
, “
The Mechanical Properties of Quenched Uranium-Molybdenum Alloys: Part I: Tensile Tests on Polycrystalline Specimens
,”
J. Nucl. Mater.
,
11
(
2
), pp.
149
162
.10.1016/0022-3115(64)90003-0
25.
Hoge
,
K. G.
,
1966
, “
Some Mechanical Properties of Uranium-10 Weight Percent Molybdenum Alloy Under Dynamic Tension Loads
,”
ASME J. Basic Eng.
,
88
(
2
), pp.
509
517
.10.1115/1.3645889
26.
Boyer
,
H. E.
, and
Gall
,
T. L.
,
1985
,
Metals Handbook
,
American Society for Metals
,
Materials Park, OH
, accessed July, 20, 2023, https://www.osti.gov/biblio/5760918
27.
Holt
,
J. M.
,
Mindlin
,
H.
, and
Ho
,
C. Y.
,
1996
,
Structural Alloys Handbook
,
CINDAS/Purdue University
, 1996 ed.,
West Lafayette, IN
.https://cindasdata.com/products/sah
28.
Gates
,
J. E.
,
Bodine
,
E. G.
,
Bell
,
J. C.
,
Bauer
,
A. A.
, and
Calkins
,
G. D.
,
1958
, “
Stress-Strain Properties of Irradiated Uranium-10 w/o Molybdenum
,”
Battelle Memorial Institute
,
Columbus, OH
, Report No. BMI-APDA-638.
29.
Beghi
,
G.
,
1968
, “
Gamma Phase Uranium-Molybdenum Fuel Alloys
,”
European Atomic Energy Community
,
Brussels, Belgium
, Report No. EUR-4053.
30.
Saller
,
H. A.
,
Dickerson
,
R. F.
,
Bauer
,
A. A.
, and
Daniel
,
N. E.
,
1956
, “
Properties of a Fissium-Type Alloy
,”
Battelle Memorial Institute
,
Columbus, OH
, Report No. BMI-1123.
31.
Klein
,
J. L.
,
1962
, “
Uranium and Its Alloys
,”
Nuclear Reactor Fuel Elements
,
A.
Kaufmann
, and
R.
Kaufmann
, eds.,
Wiley
,
New York-London
, Chapter 3, p.
31
.
32.
Schulthess
,
J. L.
,
Lloyd
,
W. R.
,
Rabin
,
B.
,
Wheeler
,
K.
, and
Walters
,
T. W.
,
2019
, “
Mechanical Properties of Irradiated U-Mo Alloy Fuel
,”
J. Nucl. Mater.
,
515
, pp.
91
106
.10.1016/j.jnucmat.2018.12.025
33.
Schulthess
,
J. L.
,
Lloyd
,
W. R.
,
Rabin
,
B.
,
Heighes
,
M.
,
Trowbridge
,
T.
, and
Perez
,
E.
,
2018
, “
Elevated Temperature Tensile Tests on DU-10 Mo Rolled Foils
,”
J. Nucl. Mater.
,
510
, pp.
282
296
.10.1016/j.jnucmat.2018.08.024
34.
Frazer
,
D.
,
Jadernas
,
D.
,
Bolender
,
N.
,
Madden
,
J.
,
Giglio
,
J.
, and
Hosemann
,
P.
,
2019
, “
Elevated Temperature Microcantilever Testing of Fresh U-10Mo Fuel
,”
J. Nucl. Mater.
,
526
, p.
151746
.10.1016/j.jnucmat.2019.151746
35.
Brown
,
D. W.
,
Alexander
,
D. J.
,
Clarke
,
K. D.
,
Clausen
,
B.
,
Okuniewski
,
M. A.
, and
Sisneros
,
T. A.
,
2013
, “
Elastic Properties of Rolled Uranium-10 wt% Molybdenum Nuclear Fuel Foils
,”
Scr. Mater.
,
69
(
9
), pp.
666
669
.10.1016/j.scriptamat.2013.07.025
36.
Schulthess
,
J.
,
Heighes
,
M.
,
Michelich
,
C.
,
Adkins
,
C.
,
Marshall
,
M. C.
,
Plummer
,
M.
,
Di Lemma
,
F.
,
Trowbridge
,
T.
, and
Cole
,
J. I.
,
2022
, “
Mechanical and Thermophysical Properties of Low Enriched Uranium-10 wt% Molybdenum Rolled Foils
,”
J. Nucl. Mater.
,
563
, p.
153628
.10.1016/j.jnucmat.2022.153628
37.
Hubbard
,
L. R.
,
Arendt
,
C. L.
,
Dye
,
D.
,
Clayton
,
C. K.
,
Lerchen
,
M. E.
,
Lombardo
,
N.
,
Lavender
,
C.
, and
Zacher
,
A. H.
,
2017
, “
U-10Mo Baseline Fuel Fabrication Process Description
,”
Pacific Northwest National Laboratory
,
Richland, WA
, Report No. PNNL-26880.
38.
Li
,
Y.
,
Ding
,
G.
,
Xie
,
Z.
,
Zhang
,
J.
,
Jian
,
X.
,
Ding
,
S.
, and
Li
,
Y.
,
2023
, “
Models for Effective Elastic Constants of Irradiated U-10Mo Fuels With Distributed Fission Gas Bubbles
,”
J. Nucl. Mater.
,
579
, p.
154359
.10.1016/j.jnucmat.2023.154359
39.
Jian
,
X.
,
Zhang
,
J.
,
Li
,
Y.
, and
Ding
,
S.
,
2023
, “
Skeleton-Creep Based Bubble Growth Model and Multi-Scale Mechanical Constitutive Model for U-10Mo Fuels Under Irradiation
,”
Int. J. Plast.
,
163
, p.
103557
.10.1016/j.ijplas.2023.103557
40.
Cai
,
M.
,
Cong
,
T.
,
Xiao
,
Y.
, and
Gu
,
H.
,
2023
, “
Preliminary Thermal-Mechanical Coupled Modeling of U-10Mo Helical Cruciform Fuel Rods Under the Unirradiated and Irradiated Conditions
,”
Ann. Nucl. Energy
,
181
, p.
109532
.10.1016/j.anucene.2022.109532
41.
Barr
,
C. M.
,
Lang
,
E.
,
Burns
,
K.
,
Price
,
P.
,
Miller
,
B. D.
,
Keiser
,
D. D.
,
Aitkaliyeva
,
A.
, and
Hattar
,
K.
,
2023
, “
The Complex Structural and Chemical Nature of Monolithic U-10Mo Fuel and Zr Barrier Layer
,”
J. Nucl. Mater.
,
573
, p.
154083
.10.1016/j.jnucmat.2022.154083
42.
Mao
,
X.
,
Zhang
,
J.
,
Yuan
,
P.
,
Yan
,
F.
,
Wang
,
H.
,
Jian
,
X.
,
Lu
,
C.
,
Ding
,
S.
, and
Li
,
Y.
,
2022
, “
An Innovative Multi-Layer Shell Model for in-Pile Thermo-Mechanical Behavior Analysis of Plate-Type Fuel Assemblies
,”
Compos. Struct.
,
293
, p.
115735
.10.1016/j.compstruct.2022.115735
43.
Jian
,
X.
,
Yan
,
F.
,
Kong
,
X.
,
Li
,
Y.
, and
Ding
,
S.
,
2022
, “
Further Development of the Fission Gas Swelling Model for U-10Mo Fuels
,”
J. Nucl. Mater.
,
565
, p.
153769
.10.1016/j.jnucmat.2022.153769
44.
Kong
,
X.
,
Jian
,
X.
,
Yan
,
F.
,
Li
,
W.
,
Guo
,
Z.
,
Lu
,
C.
,
Ding
,
S.
, and
Li
,
Y.
,
2021
, “
Macro-Mesoscale in-Pile Thermal-Mechanical Behavior Simulation of a UMo/Zr Monolithic Fuel Plate
,”
Front. Energy Res., Nucl. Energy
,
9
, Article No. 801398.10.3389/fenrg.2021.801398
45.
Borts
,
V. B.
,
Gann
,
V. V.
,
Zelinsky
,
A. Y.
,
Parkhomenko
,
A. A.
,
Vanzha
,
A. F.
,
Marchenko
,
Y.
, and
Patochkin
,
I. V.
,
2022
, “
Burnup and Radiation Embrittlement of the U-Mo Neutron Source Target
,”
Probl. At. Sci. Technol.
,
2022
(
2
), pp.
57
61
.10.46813/2022-138-057
46.
Mao
,
X.
,
Jian
,
X.
,
Wang
,
H.
,
Zhang
,
J.
,
Zhang
,
J.
,
Yan
,
F.
,
Wei
,
H.
,
Ding
,
S.
, and
Li
,
Y.
,
2021
, “
Thermo-Mechanical Coupling Behavior Analysis for a U-10Mo/Al Monolithic Fuel Assembly
,”
Nucl. Eng. Technol.
,
53
(
9
), pp.
2937
2952
.10.1016/j.net.2021.03.003
47.
Mao
,
X.
,
Jian
,
X.
,
Zhang
,
J.
,
Yan
,
F.
,
Ding
,
S.
,
Huo
,
Y.
,
Wang
,
H.
,
Zhang
,
L.
, and
Li
,
Y.
,
2021
, “
Effects of U-Mo Irradiation Creep Performance on the Thermo-Mechanical Coupling Behavior in U-Mo/Al Monolithic Fuel Assemblies
,”
Front. Energy Res., Nucl. Energy
,
9
, Article No. 676881.10.3389/fenrg.2021.676881
48.
Jian
,
X.
, and
Ding
,
S.
,
2020
, “
Thermal Creep Effects of Aluminum Alloy Cladding on the Irradiation-Induced Mechanical Behavior in U-10Mo/Al Monolithic Fuel Plates
,”
Nucl. Eng. Technol.
,
52
(
4
), pp.
802
810
.10.1016/j.net.2019.09.008
49.
Xiaobin
,
J.
,
Feng
,
Y.
,
Xiangzhe
,
K.
, and
Shurong
,
D.
,
2019
, “
Effects of U-Mo Irradiation Creep Coefficient on the Mesoscale Mechanical Behavior in U-Mo/Al Monolithic Fuel Plates
,”
Nucl. Mater. Energy
,
21
, p.
100706
.10.1016/j.nme.2019.100706
50.
Yan
,
F.
,
Jian
,
X.
, and
Ding
,
S.
,
2019
, “
Effects of UMo Irradiation Creep on the Thermo-Mechanical Behavior in Monolithic UMo/Al Fuel Plates
,”
J. Nucl. Mater.
,
524
, pp.
209
217
.10.1016/j.jnucmat.2019.07.006
51.
Jian
,
X.
,
Kong
,
X.
, and
Ding
,
S.
,
2019
, “
A Mesoscale Stress Model for Irradiated U-10Mo Monolithic Fuels Based on Evolution of Volume Fraction/Radius/Internal Pressure of Bubbles
,”
Nucl. Eng. Technol.
,
51
(
6
), pp.
1575
1588
.10.1016/j.net.2019.04.011
52.
Choe
,
D. O.
,
Gilbreath
,
P. E.
,
O'Donnell
,
P. F.
,
Meacham
,
N. D.
,
Peterson-Drooge
,
J. L.
, and
Marshall
,
M. A.
,
2021
, “
MP-1 as-Run Low Power Physics Analysis in the ATR Large B Position (B-12)
,”
Idaho National Laboratory
,
Idaho Falls, ID
, Report No. ECAR-5069, Rev. 1.
53.
Choe
,
D. O.
,
Gilbreath
,
P. E.
,
O'Donnell
,
P. F.
,
Meacham
,
N. D.
,
Peterson-Drooge
,
J. L.
, and
Marshall
,
M. A.
,
2021
, “
MP-1 as-Run Low Power Physics Analysis in the ATR Large B Position (B-11)
,”
Idaho National Laboratory
,
Idaho Falls, ID
, Report No. ECAR-5657, Rev. 0.
54.
Barney
,
J.
,
Hawkes
,
G.
,
Fradeneck
,
A.
,
Meacham
,
N.
,
Howard
,
R.
,
Marshall
,
M.
, and
Cole
,
J. I.
,
2021
, “
As-Run Thermal Analysis of the MP-1 Experiment in the ATR B-10 Position
,”
Idaho National Laboratory
,
Idaho Falls, ID
, Report No. ECAR-5659, Rev. 0.
55.
Barney
,
J.
,
Hawkes
,
G.
,
Fradeneck
,
A.
,
Meacham
,
N.
,
Howard
,
R.
,
Marshall
,
M.
, and
Cole
,
J. I.
,
2022
, “
As-Run Thermal Analysis of the MP-1 Experiment in the ATR B-12 Position
,”
Idaho National Laboratory
,
Idaho Falls, ID
, Report No. ECAR-5661, Rev. 0.
56.
Choe, D. O.,
2021
,
ATR Cycles 164A and 164B as-Run Analysis of MP-1 Low Power Experiment in the ATR Large B Position (B-10)
,
Idaho National Laboratory
,
Idaho Falls, ID
, Report No. ECAR-5656.
57.
Choe, D. O.,
2021
,
As-Run Analysis for the MP-1 Medium Power Experiments in Cycles 164B and 166
,
Idaho National Laboratory
,
Idaho Falls, ID
, Report No. ECAR-5658.
58.
Barney
,
J.
,
Hawkes
,
G.
,
Fradeneck
,
A.
,
Meacham
,
N.
,
Howard
,
R.
,
Marshall
,
M.
, and
Cole
,
J. I.
,
2022
, “
As-Run Thermal Analysis of the MP-1 Experiment in the ATR B-11 Position
,”
Idaho National Laboratory
,
Idaho Falls, ID
, Report No. ECAR-5660, Rev. 0.
59.
Barney
,
J.
,
Hawkes
,
G.
,
Fradeneck
,
A.
,
Meacham
,
N.
,
Howard
,
R.
,
Marshall
,
M.
, and
Cole
,
J. I.
,
2021
, “
As-Run Thermal Analysis of the MP-1 Experiment in the ATR South Flux Trap Position
,”
Idaho National Laboratory
,
Idaho Falls, ID
, Report No. ECAR-5662, Rev. 0.
60.
Robinson
,
A. B.
,
Hanson
,
W. A.
,
Lybeck
,
N. J.
,
Marshall
,
M. A.
,
Winston
,
A. J.
,
Giglio
,
J. J.
, and
Cole
,
J. I.
,
2022
, “
MP-1 Post Irradiation Examination Summary Report
,”
Idaho National Laboratory
,
Idaho Falls, ID
.
61.
Kalsar
,
R.
,
Di Lemma
,
F. G.
,
Trowbridge
,
T.
,
Tegtmeier
,
E. L.
,
McCabe
,
R.
,
Prabhakaran
,
R.
,
Overman
,
N. R.
, et al., “
Characterization Report for the MP-1 Experiment Fabrication Campaign
,”
Pacific Northwest National Laboratory
,
Richland, WA
, Report No. PNNL-30372.
62.
ASTM
,
2023
, “
Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature
,”
ASTM International Book of Standards
, West Conshohocken, PA, Standard No. ASTM C1161-18.
63.
ASTM
,
2017
, “
Standard Test Method for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials
,”
ASTM International Book of Standards
, West Conshohocken, PA, Standard No. ASTM D790-17.
64.
ASTM
,
2020
, “
Standard Test Method for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials by Four-Point Bending
,”
ASTM International Book of Standards
, West Conshohocken, PA, Standard No. ASTM D6272-17e1.
65.
ASTM
,
2022
, “
Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading)
,”
ASTM International Book of Standards
, West Conshohocken, PA, Standard No. ASTMC78/C78m-22.
66.
Gere
,
J. M.
, and
Goodno
,
B. J.
,
2012
,
Mechanics of Materials
,
Cengage Learning
.
67.
Lloyd
,
W. R.
,
Schulthess
,
J.
, and
Wheeler
,
K.
,
2018
, “
AFIP-7 Irradiated U-10Mo Fuel Mechanical Properties Characterization
,”
Idaho National Laboratory
, Idaho Falls,
ID
, Report No. ECAR-4051.
68.
Lustman
,
B.
,
Kerze
,
F.
, and
Straumanis
,
M. E.
,
1957
, “
The Metallurgy of Zirconium
,”
J. Electrochem. Soc.
,
104
(
12
), p.
254C
.10.1149/1.2428451
69.
Garde
,
A. M.
, and
Reed-Hill
,
R. E.
,
1973
, “
Dual Analysis of Longitudinal and Transverse Zirconium Tensile Stress-Strain Data
,”
Symposium on Zirconium in Nuclear Applications
,
Portland, OR
, Aug. 21.10.1520/STP32105S
70.
Williams
,
C. D.
, and
Gilbert
,
R. W.
,
1969
, “
Radiation Damage in Reactor Materials
,”
Proceedings of a Symposium
,
International Atomic Energy Agency
,
Vienna
, June 2–6, p.
1069
.https://www.osti.gov/biblio/4153835
71.
Lee
,
D.
, and
Koch
,
E. F.
,
1974
, “
Irradiation Damage in Zircaloy-2 Produced by High-Dose Ion Bombardment
,”
J. Nucl. Mater.
,
50
(
2
), pp.
162
174
.10.1016/0022-3115(74)90153-6
72.
Rest
,
J.
,
Kim
,
Y. S.
,
Hofman
,
G. L.
,
Meyer
,
M. K.
, and
Hayes
,
S. L.
, “
U-Mo Fuels Handbook. Version 1.0
,”
Argonne National Laboratory
,
Argonne, IL
, Report No. ANL-09/31.
73.
Kim
,
Y. S.
,
Hofman
,
G. L.
,
Cheon
,
J. S.
,
Robinson
,
A. B.
, and
Wachs
,
D. M.
,
2013
, “
Fission Induced Swelling and Creep of U-Mo Alloy Fuel
,”
J. Nucl. Mater.
,
437
(
1–3
), pp.
37
46
.10.1016/j.jnucmat.2013.01.346
74.
Kim
,
Y. S.
, and
Hofman
,
G. L.
,
2011
, “
Fission Product Induced Swelling of U-Mo Alloy Fuel
,”
J. Nucl. Mater.
,
419
(
1–3
), pp.
291
301
.10.1016/j.jnucmat.2011.08.018
75.
Robinson
,
A. B.
,
Williams
,
W. J.
,
Hanson
,
W. A.
,
Rabin
,
B. H.
,
Lybeck
,
N. J.
, and
Meyer
,
M. K.
,
2021
, “
Swelling of U-Mo Monolithic Fuel: Developing a Predictive Swelling Correlation Under Research Reactor Conditions
,”
J. Nucl. Mater.
,
544
, p.
152703
.10.1016/j.jnucmat.2020.152703
76.
Reese
,
S.
,
2013
, “
Evaluation of Young's Modulus and Anisotropy in Cold Rolled DU-10Mo Foils Using Laser Ultrasonic Methods
,”
Idaho National Laboratory
,
Idaho Falls, ID
, Report No. TEV-1799.
77.
Jana
,
S.
,
Overman
,
N.
,
Varga
,
T.
,
Lavender
,
C.
, and
Joshi
,
V. V.
,
2017
, “
Phase Transformation Kinetics in Rolled U-10 wt.% Mo Foil: Effect of Post-Rolling Heat Treatment and Prior γ-UMo Grain Size
,”
J. Nucl. Mater.
,
496
, pp.
215
226
.10.1016/j.jnucmat.2017.09.030
78.
Leguillon
,
D.
,
Martin
,
E.
, and
Lafarie-Frenot
,
M. C.
,
2015
, “
Flexural Vs. Tensile Strength in Brittle Materials
,”
C. R. Mec.
,
343
(
4
), pp.
275
281
.10.1016/j.crme.2015.02.003
You do not currently have access to this content.