Abstract

An improved heat flux partitioning model of pool boiling is proposed in this study to predict the material-conjugated pool boiling curve. The fundamental rationale behind the improved model is that heat convection is only governed by far-field mechanisms while heat quenching and evaporation are partially subjected to near-field material-dependent mechanisms. The quenching heat flux is derived dependently on thermal-effusivities of solid and liquid, respectively, based on the transient heat conduction analyses. The evaporative heat flux correlates the material-dependent bubble dynamics parameters including bubble departure frequency and nucleation site density together to yield a new analytical form and support the theoretical reflections of material-conjugated boiling behaviors. The proposed model can approximately capture the material-related impacts on boiling heat transfer coefficients and simulate pool boiling curves validated by the use of experimental data.

References

1.
Ali
,
A. F.
, and
El-Genk
,
M. S.
,
2012
, “
Spreaders for Immersion Nucleate Boiling Cooling of a Computer Chip With a Central Hot Spot, Energy
,”
Convers. Manag.
,
53
(
1
), pp.
259
267
.10.1016/j.enconman.2011.09.007
2.
He
,
M.
,
Wang
,
J.
, and
Chen
,
M.
,
2021
, “
Recent Progresses on Thermal-Hydraulics Evaluations of Accident Tolerant Fuel Cladding Materials
,”
Ann. Nucl. Energy
,
161
, p.
108391
.10.1016/j.anucene.2021.108391
3.
Chen
,
M.
,
Sun
,
X.
,
Christensen
,
R. N.
,
Skavdahl
,
I.
,
Utgikar
,
V.
, and
Sabharwall
,
P.
,
2016
, “
Pressure Drop and Heat Transfer Characteristics of a High-Temperature Printed Circuit Heat Exchanger
,”
Appl. Therm. Eng.
,
108
, pp.
1409
1417
.10.1016/j.applthermaleng.2016.07.149
4.
Sakuragi
,
T.
,
Miyakawa
,
H.
,
Nishimura
,
T.
, and
Tateishi
,
T.
,
2012
, “
Corrosion Rates of Zircaloy-4 by Hydrogen Measurement Under High pH, Low Oxygen and Low Temperature Conditions
,”
MRS Proc.
,
1475
, p.
imrc11
.10.1557/opl.2012.592
5.
Dhir
,
V. K.
,
Warrier
,
G. R.
, and
Aktinol
,
E.
,
2013
, “
Numerical Simulation of Pool Boiling: A Review
,”
ASME J. Heat Transfer-Trans. ASME
,
135
(
6
), p.
61502
.10.1115/1.4023576
6.
Rohsenow
,
W. M.
,
1971
, “
Boiling
,”
Annu. Rev. Fluid Mech.
,
3
(
1
), pp.
211
236
.10.1146/annurev.fl.03.010171.001235
7.
Pioro
,
I. L.
,
Rohsenow
,
W.
, and
Doerffer
,
S. S.
,
2004
, “
Nucleate Pool-Boiling Heat Transfer. I: Review of Parametric Effects of Boiling Surface
,”
Int. J. Heat Mass Transfer
,
47
(
23
), pp.
5033
5044
.10.1016/j.ijheatmasstransfer.2004.06.019
8.
Pioro
,
I. L.
,
Rohsenow
,
W.
, and
Doerffer
,
S. S.
,
2004
, “
Nucleate Pool-Boiling Heat Transfer. II: Assessment of Prediction Methods
,”
Int. J. Heat Mass Transfer
,
47
(
23
), pp.
5045
5057
.10.1016/j.ijheatmasstransfer.2004.06.020
9.
Hobold
,
G. M.
, and
da Silva
,
A. K.
,
2019
, “
Visualization-Based Nucleate Boiling Heat Flux Quantification Using Machine Learning
,”
Int. J. Heat Mass Transfer
,
134
, pp.
511
520
.10.1016/j.ijheatmasstransfer.2018.12.170
10.
Liu
,
Y.
,
Dinh
,
N.
,
Sato
,
Y.
, and
Niceno
,
B.
,
2018
, “
Data-Driven Modeling for Boiling Heat Transfer: Using Deep Neural Networks and High-Fidelity Simulation Results
,”
Appl. Therm. Eng.
,
144
, pp.
305
320
.10.1016/j.applthermaleng.2018.08.041
11.
Senkov
,
O. N.
,
Miracle
,
D. B.
,
Chaput
,
K. J.
, and
Couzinie
,
J.-P.
,
2018
, “
Couzinie, Development and Exploration of Refractory High Entropy Alloys—A Review
,”
J. Mater. Res.
,
33
(
19
), pp.
3092
3128
.10.1557/jmr.2018.153
12.
George
,
E. P.
,
Raabe
,
D.
, and
Ritchie
,
R. O.
,
2019
, “
High-Entropy Alloys
,”
Nat. Rev. Mater.
,
4
(
8
), pp.
515
534
.10.1038/s41578-019-0121-4
13.
Tachibana
,
F.
,
Akiyama
,
M.
, and
Kawamura
,
H.
,
1967
, “
Non-Hydrodynamic Aspects of Pool Boiling Burnout
,”
J. Nucl. Sci. Technol.
,
4
(
3
), pp.
121
130
.10.1080/18811248.1967.9732708
14.
Golobič
,
I.
, and
Bergles
,
A. E.
,
1997
, “
Effects of Heater-Side Factors on the Saturated Pool Boiling Critical Heat Flux
,”
Exp. Therm. Fluid Sci.
,
15
(
1
), pp.
43
51
.10.1016/S0894-1777(96)00170-7
15.
Raghupathi
,
P. A.
, and
Kandlikar
,
S. G.
,
2017
, “
Effect of Thermophysical Properties of the Heater Substrate on Critical Heat Flux in Pool Boiling
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
11
), p.
111502
.10.1115/1.4036653
16.
Yeom
,
H.
,
Gutierrez
,
E.
,
Jo
,
H.
,
Zhou
,
Y.
,
Mondry
,
K.
,
Sridharan
,
K.
, and
Corradini
,
M.
,
2020
, “
Pool Boiling Critical Heat Flux Studies of Accident Tolerant Fuel Cladding Materials
,”
Nucl. Eng. Des.
,
370
, p.
110919
.10.1016/j.nucengdes.2020.110919
17.
Kim
,
M.
, and
Kim
,
S. J.
,
2020
, “
A Mechanistic Model for Nucleate Pool Boiling Including the Effect of Bubble Coalescence on Area Fractions
,”
Int. J. Heat Mass Transfer
,
163
, p.
120453
.10.1016/j.ijheatmasstransfer.2020.120453
18.
Amidu
,
M. A.
,
2021
, “
Toward Mechanistic Wall Heat Flux Partitioning Model for Fully Developed Nucleate Boiling
,”
ASME J. Heat Mass Transfer
,
143
(
11
), p.
114503
.10.1115/1.4052198
19.
Chang
,
Y. H.
, and
Ferng
,
Y. M.
,
2019
, “
Experimental Investigation on Bubble Dynamics and Boiling Heat Transfer for Saturated Pool Boiling and Comparison Data With Previous Works
,”
Appl. Therm. Eng.
,
154
, pp.
284
293
.10.1016/j.applthermaleng.2019.03.092
20.
Tanaka
,
T.
,
Miyazaki
,
K.
, and
Yabuki
,
T.
,
2021
, “
Observation of Heat Transfer Mechanisms in Saturated Pool Boiling of Water by High-Speed Infrared Thermometry
,”
Int. J. Heat Mass Transfer
,
170
, p.
121006
.10.1016/j.ijheatmasstransfer.2021.121006
21.
Wang
,
H.
,
Xiong
,
J.
, and
Wang
,
J.
,
2023
, “
Development and Assessment of Five-Component Wall Boiling Heat Flux Partitioning Model
,”
Int. J. Multiphase Flow
,
158
, p.
104306
.10.1016/j.ijmultiphaseflow.2022.104306
22.
Kurul
,
N.
, and
Podowski
,
M. Z.
,
1990
, “
Multidimensional Effects in Forced Convection Subcooled Boiling
,”
International Heat Transfer Conference
, Vol.
9
, Jerusalem, Israel, Aug. 19-24, pp.
21
26
.
23.
Li
,
X.
,
Yuan
,
Y.
, and
Tu
,
J.
,
2015
, “
A Parametric Study of the Heat Flux Partitioning Model for Nucleate Boiling of Nanofluids
,”
Int. J. Therm. Sci.
,
98
, pp.
42
50
.10.1016/j.ijthermalsci.2015.06.020
24.
Chuang
,
T. J.
,
Chang
,
Y. H.
, and
Ferng
,
Y. M.
,
2019
, “
Investigating Effects of Heating Orientations on Nucleate Boiling Heat Transfer, Bubble Dynamics, and Wall Heat Flux Partition Boiling Model for Pool Boiling
,”
Appl. Therm. Eng.
,
163
, p.
114358
.10.1016/j.applthermaleng.2019.114358
25.
Gerardi
,
C.
,
Buongiorno
,
J.
,
Hu
,
L.
, and
McKrell
,
T.
,
2010
, “
Study of Bubble Growth in Water Pool Boiling Through Synchronized, Infrared Thermometry and High-Speed Video
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4185
4192
.10.1016/j.ijheatmasstransfer.2010.05.041
26.
Wang
,
Z.
,
Podowski
,
M. Z.
, and
Shaver
,
D.
,
2016
, “
On the Modeling of Wall Heat Flux Partitioning in Subcooled Flow Boiling
,”
Trans. Am. Nucl. Soc.
,
114
, pp.
881
883
.https://www.researchgate.net/publication/318768932_On_the_Modeling_of_Wall_Heat_Flux_Partitioning_in_Subcooled_Flow_Boiling
27.
Amidu
,
M. A.
,
Jung
,
S.
, and
Kim
,
H.
,
2018
, “
Direct Experimental Measurement for Partitioning of Wall Heat Flux During Subcooled Flow Boiling: Effect of Bubble Areas of Influence Factor
,”
Int. J. Heat Mass Transfer
,
127
, pp.
515
533
.10.1016/j.ijheatmasstransfer.2018.07.079
28.
Zhang
, B. J.
, and
Kim
,
K. J.
,
2014
, “
Nucleate Pool Boiling Heat Transfer Augmentation on Hydrophobic Self-Assembly Mono-Layered Alumina Nano-Porous Surfaces
,”
Int. J. Heat Mass Transfer
,
73
, pp.
551
561
.10.1016/j.ijheatmasstransfer.2014.02.032
29.
Kant
,
K.
, and
Weber
,
M. E.
,
1994
, “
Stability of Nucleation Sites in Pool Boiling
,”
Exp. Therm. Fluid Sci.
,
9
(
4
), pp.
456
465
.10.1016/0894-1777(94)90023-X
30.
Benjamin
,
R. J.
, and
Balakrishnan
,
A. R.
,
1997
, “
Nucleation Site Density in Pool Boiling of Saturated Pure Liquids: Effect of Surface Microroughness and Surface and Liquid Physical Properties
,”
Exp. Therm. Fluid Sci.
,
15
(
1
), pp.
32
42
.10.1016/S0894-1777(96)00168-9
31.
Zhang
,
L.
,
Gong
,
S.
,
Lu
,
Z.
,
Cheng
,
P.
, and
Wang
,
E. N.
,
2022
, “
Boiling Crisis Due to Bubble Interactions
,”
Int. J. Heat Mass Transfer
,
182
, p.
121904
.10.1016/j.ijheatmasstransfer.2021.121904
32.
Wang
,
C. H.
, and
Dhir
,
V. K.
,
1993
, “
Effect of Surface Wettability on Active Nucleation Site Density During Pool Boiling of Water on a Vertical Surface
,”
ASME J. Heat Transfer-Trans. ASME
,
115
(
3
), pp.
659
669
.10.1115/1.2910737
33.
Ghazivini
,
M.
,
Hafez
,
M.
,
Ratanpara
,
A.
, and
Kim
,
M.
,
2021
, “
A Review on Correlations of Bubble Growth Mechanisms and Bubble Dynamics Parameters in Nucleate Boiling
,”
J. Therm. Anal. Calorim.
,
147
(
11
), pp.
6035
6071
.10.1007/s10973-021-10876-2
34.
Zhang
,
L.
,
Gong
,
S.
,
Lu
,
Z.
,
Cheng
,
P.
, and
Wang
,
E. N.
,
2021
, “
A Unified Relationship Between Bubble Departure Frequency and Diameter During Saturated Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
,
165
, p.
120640
.10.1016/j.ijheatmasstransfer.2020.120640
35.
van Stralen
,
S. J. D.
,
Sohal
,
M. S.
,
Cole
,
R.
, and
Sluyter
,
W. M.
,
1975
, “
Bubble Growth Rates in Pure and Binary Systems: Combined Effect of Relaxation and Evaporation Microlayers
,”
Int. J. Heat Mass Transfer
,
18
(
3
), pp.
453
467
.10.1016/0017-9310(75)90033-2
36.
Murallidharan
,
J. S.
,
Prasad
,
B.
,
Patnaik
,
B. V.
,
Hewitt
,
G. F.
, and
Badalassi
,
V.
,
2016
, “
CFD Investigation and Assessment of Wall Heat Flux Partitioning Model for the Prediction of High Pressure Subcooled Flow Boiling
,”
Int. J. Heat Mass Transfer
,
103
, pp.
211
230
.10.1016/j.ijheatmasstransfer.2016.06.050
37.
Li
,
Q.
,
Avramova
,
M.
,
Jiao
,
Y.
,
Chen
,
P.
,
Yu
,
J.
,
Pu
,
Z.
, and
Chen
,
J.
,
2018
, “
CFD Prediction of Critical Heat Flux in Vertical Heated Tubes With Uniform and Non-Uniform Heat Flux
,”
Nucl. Eng. Des.
,
326
, pp.
403
412
.10.1016/j.nucengdes.2017.11.009
38.
Phan
,
H. T.
,
Caney
,
N.
,
Marty
,
P.
,
Colasson
,
S.
, and
Gavillet
,
J.
,
2009
, “
Surface Wettability Control by Nanocoating: The Effects on Pool Boiling Heat Transfer and Nucleation Mechanism
,”
Int. J. Heat Mass Transfer
,
52
(
23–24
), pp.
5459
5471
.10.1016/j.ijheatmasstransfer.2009.06.032
39.
Nam
,
Y.
,
Aktinol
,
E.
,
Dhir
,
V. K.
, and
Ju
,
Y. S.
,
2011
, “
Single Bubble Dynamics on a Superhydrophilic Surface With Artificial Nucleation Sites
,”
Int. J. Heat Mass Transfer
,
54
(
7–8
), pp.
1572
1577
.10.1016/j.ijheatmasstransfer.2010.11.031
40.
Allred
,
T. P.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2021
, “
The Role of Dynamic Wetting Behavior During Bubble Growth and Departure From a Solid Surface
,”
Int. J. Heat Mass Transfer
,
172
, p.
121167
.10.1016/j.ijheatmasstransfer.2021.121167
41.
Kumar
,
N.
,
Ghosh
,
P.
, and
Shukla
,
P.
,
2021
, “
Development of an Approximate Model for the Prediction of Bubble Departure Diameter in Pool Boiling of Water
,”
Int. Commun. Heat Mass Transfer
,
127
, p.
105531
.10.1016/j.icheatmasstransfer.2021.105531
42.
Liu
,
Y.
,
Du
,
Y.
,
Fei
,
G.
,
Zhou
,
T.
, and
Zhao
,
C.
,
2023
, “
Effects of Surface Wettability on Bubble Departure and Critical Heat Flux: A Parametric Study Based on 3-D Dynamic Force Analysis Model
,”
Int. J. Therm. Sci.
,
186
, p.
108149
.10.1016/j.ijthermalsci.2023.108149
43.
Han
,
C.-Y.
, and
Griffith
,
P.
,
1965
, “
The Mechanism of Heat Transfer in Nucleate Pool Boiling–Part I: Bubble Initiaton, Growth and Departure
,”
Int. J. Heat Mass Transfer
,
8
(
6
), pp.
887
904
.10.1016/0017-9310(65)90073-6
44.
Han
,
C.-Y.
, and
Griffith
,
P.
,
1965
, “
The Mechanism of Heat Transfer in Nucleate Pool Boiling–Part II: The Heat Flux-Temperature Difference Relation
,”
Int. J. Heat Mass Transfer
,
8
(
6
), pp.
905
914
.10.1016/0017-9310(65)90074-8
45.
Lloyd
,
J. R.
, and
Moran
,
W. R.
,
1974
, “
Natural Convection Adjacent to Horizontal Surface of Various Planforms
,”
ASME J. Heat Transfer-Trans. ASME
,
96
(
4
), pp.
443
447
.10.1115/1.3450224
46.
Pera
,
L.
, and
Gebhart
,
B.
,
1973
, “
Natural Convection Boundary Layer Flow Over Horizontal and Slightly Inclined Surfaces
,”
Int. J. Heat Mass Transfer
,
16
(
6
), pp.
1131
1146
.10.1016/0017-9310(73)90126-9
47.
Godinez
,
J. C.
,
Cho
,
H.
,
Fadda
,
D.
,
Lee
,
J.
,
Park
,
S. J.
, and
You
,
S. M.
,
2021
, “
Effects of Materials and Microstructures on Pool Boiling of Saturated Water From Metallic Surfaces
,”
Int. J. Therm. Sci.
,
165
, p.
106929
.10.1016/j.ijthermalsci.2021.106929
48.
Ali
,
A. F.
,
Gorton
,
J. P.
,
Brown
,
N. R.
,
Terrani
,
K. A.
,
Jensen
,
C. B.
,
Lee
,
Y.
, and
Blandford
,
E. D.
,
2018
, “
Surface Wettability and Pool Boiling Critical Heat Flux of Accident Tolerant Fuel cladding-FeCrAl Alloys
,”
Nucl. Eng. Des.
,
338
, pp.
218
231
.10.1016/j.nucengdes.2018.08.024
49.
Moon
,
H. W.
,
Yoon
,
Y. J.
,
Park
,
J. H.
,
Myung
,
B.-S.
, and
Kim
,
D. E.
,
2016
, “
Dynamic Wetting and Boiling Characteristics on Micro-Structured and Micro/Nano Hierarchically Structured Surfaces
,”
Exp. Therm. Fluid Sci.
,
74
, pp.
19
26
.10.1016/j.expthermflusci.2015.11.019
50.
Wang
,
J.
,
Wang
,
Z.
,
He
,
S.
,
Li
,
B.
, and
Wang
,
J.
,
2023
, “
Marangoni Effect on the Size of Dry Spot and CHF in Saturated Pool Boiling of Pure Water and RB Solution
,”
Int. Commun. Heat Mass Transfer
,
141
, p.
106601
.10.1016/j.icheatmasstransfer.2022.106601
51.
Lim
,
J. H.
,
Park
,
M.
,
Shin
,
S. M.
, and
Chung
,
S. S.
,
2022
, “
Exploring the Onset of Nucleate Boiling With Hypervapotron Channel for Tokamak Cooling System Application
,”
Appl. Therm. Eng.
,
209
, p.
118334
.10.1016/j.applthermaleng.2022.118334
52.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
.10.1021/ie4033999
53.
Shrivastava
,
A.
, and
Gupta
,
V.
,
2011
, “
Methods for the Determination of Limit of Detection and Limit of Quantitation of the Analytical Methods
,”
Chronicles Young Sci.
,
2
(
1
), pp.
21
25
.10.4103/2229-5186.79345
54.
Jung
,
S.
, and
Kim
,
H.
,
2019
, “
Observation of the Mechanism Triggering Critical Heat Flux in Pool Boiling of Saturated Water Under Atmospheric Pressure
,”
Int. J. Heat Mass Transfer
,
128
, pp.
229
238
.10.1016/j.ijheatmasstransfer.2018.08.128
55.
Gong
,
S.
,
Zhang
,
L.
,
Cheng
,
P.
, and
Wang
,
E. N.
,
2020
, “
Understanding Triggering Mechanisms for Critical Heat Flux in Pool Boiling Based on Direct Numerical Simulations
,”
Int. J. Heat Mass Transfer
,
163
, p.
120546
.10.1016/j.ijheatmasstransfer.2020.120546
56.
Chu
,
I.-C.
,
No
,
H. C.
,
Song
,
C.-H.
, and
Euh
,
D. J.
,
2014
, “
Observation of Critical Heat Flux Mechanism in Horizontal Pool Boiling of Saturated Water
,”
Nucl. Eng. Des.
,
279
, pp.
189
199
.10.1016/j.nucengdes.2014.03.013
You do not currently have access to this content.