Abstract

Thermal molten salt reactors can be designed in many configurations. This paper investigates the optimal geometry of a one fluid molten salt reactor (OFMSR) in a virtual one-and-half fluid configuration with a fixed fuel salt volume. Two primary configurations were studied, axial blanket (three models) and radial blanket (two models). Neutronic calculations were performed using Monte Carlo N-particle 6.2 (MCNP6.2) and Serpent-2 reactor physics codes with evaluated nuclear data files/B-VII.0 continuous neutron library. The analysis comprises criticality calculation, temperature coefficient of reactivity (TCR), breeding ratio (BR), and kinetic parameters. The results imply a good agreement between MCNP and Serpent calculations. TCR values show a different pattern between axial and radial blanket configuration. While the correlation between TCR and BR is inversely correlated in axial blanket, it is linear in radial blanket configuration. Overall, radial blanket configuration seemed to show better neutronic performance than axial blanket configuration, with comparably strong negative TCR and large BR.

References

1.
Serp
,
J.
,
Allibert
,
M.
,
Beneš
,
O.
,
Delpech
,
S.
,
Feynberg
,
O.
,
Ghetta
,
V.
,
Heuer
,
D.
, et al.,
2014
, “
The Molten Salt Reactor (MSR) in Generation IV: Overview and Perspectives
,”
Prog. Nucl. Energy
,
77
, pp.
308
319
.10.1016/j.pnucene.2014.02.014
2.
Křepel
,
J.
,
Hombourger
,
B.
,
Fiorina
,
C.
,
Mikityuk
,
K.
,
Rohde
,
U.
,
Kliem
,
S.
, and
Pautz
,
A.
,
2014
, “
Fuel Cycle Advantages and Dynamics Features of Liquid Fueled MSR
,”
Ann. Nucl. Energy
,
64
, pp.
380
397
.10.1016/j.anucene.2013.08.007
3.
Hombourger
,
B.
,
Křepel
,
J.
, and
Pautz
,
A.
,
2020
, “
The EQL0D Fuel Cycle Procedure and Its Application to the Transition to Equilibrium of Selected Molten Salt Reactor Designs
,”
Ann. Nucl. Energy
,
144
, p.
107504
.10.1016/j.anucene.2020.107504
4.
LeBlanc
,
D.
,
2010
, “
Molten Salt Reactors: A New Beginning for an Old Idea
,”
Nucl. Eng. Des.
,
240
(
6
), pp.
1644
1656
.10.1016/j.nucengdes.2009.12.033
5.
Heuer
,
D.
,
Merle-Lucotte
,
E.
,
Allibert
,
M.
,
Brovchenko
,
M.
,
Ghetta
,
V.
, and
Rubiolo
,
P.
,
2014
, “
Towards the Thorium Fuel Cycle With Molten Salt Fast Reactors
,”
Ann. Nucl. Energy
,
64
, pp.
421
429
.10.1016/j.anucene.2013.08.002
6.
Mathieu
,
L.
,
Heuer
,
D.
,
Brissot
,
R.
,
Garzenne
,
C.
,
Le Brun
,
C.
,
Lecarpentier
,
D.
,
Liatard
,
E.
, et al.,
2006
, “
The Thorium Molten Salt Reactor: Moving on From the MSBR
,”
Prog. Nucl. Energy
,
48
(
7
), pp.
664
679
.10.1016/j.pnucene.2006.07.005
7.
Liaoyuan
,
H.
,
Shaopeng
,
X.
,
Jingen
,
C.
,
Guimin
,
L.
,
Jianhui
,
W.
, and
Yang
,
Z.
,
2021
, “
Th-U Breeding Performances in an Optimized Molten Chloride Salt Fast Reactor
,”
Nucl. Sci. Eng.
,
195
(
2
), pp.
185
202
.10.1080/00295639.2020.1798728
8.
Jeong
,
Y.
,
Park
,
J.
,
Lee
,
H. C.
, and
Lee
,
D.
,
2016
, “
Equilibrium Core Design Methods for Molten Salt Breeder Reactor Based on Two-Cell Model
,”
J. Nucl. Sci. Technol.
,
53
(
4
), pp.
529
536
.10.1080/00223131.2015.1062812
9.
Zou
,
C. Y.
,
Cai
,
X. Z.
,
Jiang
,
D. Z.
,
Yu
,
C. G.
,
Li
,
X. X.
,
Ma
,
Y. W.
,
Han
,
J. L.
, and
Chen
,
J. G.
,
2015
, “
Optimization of Temperature Coefficient and Breeding Ratio for a Graphite-Moderated Molten Salt Reactor
,”
Nucl. Eng. Des.
,
281
, pp.
114
120
.10.1016/j.nucengdes.2014.11.022
10.
Dwijayanto
,
R. A. P.
, and
Hermawan
,
D. P.
,
2020
, “
Investigation on Inherent Safety of One Fluid-Molten Salt Reactor (OF-MSR) With Various Starting Fuel
,”
Tri Dasa Mega
,
22
(
2
), p.
54
.10.17146/tdm.2020.22.2.5893
11.
Huke
,
A.
,
Ruprecht
,
G.
,
Weißbach
,
D.
,
Gottlieb
,
S.
,
Hussein
,
A.
, and
Czerski
,
K.
,
2015
, “
The Dual Fluid Reactor – A Novel Concept for a Fast Nuclear Reactor of High Efficiency
,”
Ann. Nucl. Energy
,
80
, pp.
225
235
.10.1016/j.anucene.2015.02.016
12.
Ifthacharo
,
M.
,
Permana
,
S.
, and
Saputra
,
G.
,
2020
, “
A Comparative Study of Th-U 233 and Th-Pu Molten-Salt Reactor (MSR) With 2-Region Core
,”
J. Phys.: Conf. Ser.
,
1493
(
1
), p.
012015
.10.1088/1742-6596/1493/1/012015
13.
Singh
,
V.
,
Lish
,
M. R.
,
Chvála
,
O.
, and
Upadhyaya
,
B. R.
,
2017
, “
Dynamics and Control of Molten-Salt Breeder Reactor
,”
Nucl. Eng. Technol.
,
49
(
5
), pp.
887
895
.10.1016/j.net.2017.06.003
14.
Li
,
G. C.
,
Cong
,
P.
,
Yu
,
C. G.
,
Zou
,
Y.
,
Sun
,
J. Y.
,
Chen
,
J. G.
, and
Xu
,
H. J.
,
2018
, “
Optimization of Th-U Fuel Breeding Based on a Single-Fluid Double-Zone Thorium Molten Salt Reactor
,”
Prog. Nucl. Energy
,
108
, pp.
144
151
.10.1016/j.pnucene.2018.04.017
15.
Harto
,
A. W.
,
2012
, “
Passive Compact Molten Salt Reactor (PCMSR), Modular Thermal Breeder Reactor With Totally Passive Safety System
,” The Third International Conference on Advances in Nuclear Science and Engineering,
Bali, Indonesia
, pp.
82
95
.
16.
Wu
,
J.
,
Chen
,
J.
,
Kang
,
X.
,
Li
,
X.
,
Yu
,
C.
,
Zou
,
C.
, and
Cai
,
X.
,
2019
, “
A Novel Concept for a Molten Salt Reactor Moderated by Heavy Water
,”
Ann. Nucl. Energy
,
132
, pp.
391
403
.10.1016/j.anucene.2019.04.043
17.
Zhang
,
Y.-P.
,
Ma
,
Y.-W.
,
Wu
,
J.-H.
,
Chen
,
J.-G.
, and
Cai
,
X.-Z.
,
2020
, “
Preliminary Analysis of Fuel Cycle Performance for a Small Modular Heavy Water-Moderated Thorium Molten Salt Reactor
,”
Nucl. Sci. Tech.
,
31
(
11
), p.
108
.10.1007/s41365-020-00823-5
18.
Imron
,
M. M.
, and
Harto
,
A. W.
,
2010
, “
Analisis Transien Pada Passive Compact Molten Salt Reactor (PCMSR)
,”
Tri Dasa Mega
,
12
(
2
), pp.
75
92.
19.
Dwijayanto
,
R. A. P.
,
Hermawan
,
D. P.
, and
Harto
,
A. W.
,
2020
, “
Preliminary Investigation on Neutronic Performance of Pu-Started One Fluid-Molten Salt Reactor (OF-MSR)
,”
Prosiding Seminar Nasional Teknologi Nuklir 2020
,
Serpong, Indonesia
,
Nov. 18
, pp.
141
147
.https://www.researchgate.net/publication/353452647_Preliminary_Investigation_on_Neutronic_Performance_of_Pu-started_One_Fluid-Molten_Salt_Reactor_OF-MSR
20.
Rykhlevskii
,
A.
,
Bae
,
J. W.
, and
Huff
,
K. D.
,
2019
, “
Modeling and Simulation of Online Reprocessing in the Thorium-Fueled Molten Salt Breeder Reactor
,”
Ann. Nucl. Energy
,
128
, pp.
366
379
.10.1016/j.anucene.2019.01.030
21.
Robertson
,
R. C.
,
1971
, “
Conceptual Design Study of a Single-Fluid Molten-Salt Breeder Reactor, ORNL-4511
,”
Oak Ridge National Laboratory
,
Oak Ridge, TN
.
22.
Park
,
J.
,
Jeong
,
Y.
,
Lee
,
H. C.
, and
Lee
,
D.
,
2015
, “
Whole Core Analysis of Molten Salt Breeder Reactor With Online Fuel Reprocessing: Whole Core Analysis of MSBR With Online Fuel Reprocessing
,”
Int. J. Energy Res.
, 39, p.
1673
.10.1002/er.3371
23.
Ashraf
,
O.
,
Rykhlevskii
,
A.
,
Tikhomirov
,
G. V.
, and
Huff
,
K. D.
,
2020
, “
Whole Core Analysis of the Single-Fluid Double-Zone Thorium Molten Salt Reactor (SD-TMSR)
,”
Ann. Nucl. Energy
,
137
, p.
107115
.10.1016/j.anucene.2019.107115
24.
Harto
,
A. W.
,
2016
, “
Nuclide Composition Analysis of PCMSR Fuel Using Thorium as Sustainable Fuel And Low Enrich Uranium As Starting Fuel
,”
ARPN J. Eng. Appli. Sci.
,
11
(
6
), p.
3993
.
25.
Widiharto
,
A.
,
2018
, “
Study on the Ability of PCMSR to Produce Valuable Isotopes as a By Product of Energy Generation
,”
IJPNA
,
3
(
1
), pp.
7
14
.10.24246/ijpna.v3i1.7-14
26.
Harto
,
A. W.
,
2015
, “
Sustainable Criticality Analysis of PCMSR Fuel Using Thorium as Sustainable Fuel and Low Enriched Uranium as Starting Fuel
,”
IJNEST
,
9
(
3
), p.
224
.10.1504/IJNEST.2015.074098
27.
Dwijayanto
,
R. A. P.
,
Oktavian
,
M. R.
,
Putra
,
M. Y. A.
, and
Harto
,
A. W.
,
2021
, “
Model Comparison of Passive Compact-Molten Salt Reactor Neutronic Design Using MCNP6 and Serpent-2
,”
Atom Indones.
,
47
(
3
), p.
191
.10.17146/aij.2021.1122
28.
Zuhair, Suwoto, Setiadipura
,
T.
, and
Kuijper
,
J. C.
,
2019
, “
Study on the Characteristics of Effective Delayed Neutron Fraction (βeff) for Pebble-Bed Reactor With Plutonium Fuel
,”
Iran J. Sci. Technol. Trans. Sci.
,
43
(
6
), pp.
3037
3045
.10.1007/s40995-019-00772-8
29.
Sembiring
,
T. M.
,
Susilo
,
J.
, and
Pinem
,
S.
,
2018
, “
Evaluation of the AP1000 Delayed Neutron Parameters Using MCNP6
,”
J. Phys.: Conf. Ser.
,
962
, p.
012030
.10.1088/1742-6596/962/1/012030
30.
Du Toit
,
M. H.
, and
Naicker
,
V. V.
,
2018
, “
Neutronic Design of Homogeneous Thorium/Uranium Fuel for 24 Month Fuel Cycles in the European Pressurized Reactor Using MCNP6
,”
Nucl. Eng. Des.
,
337
, pp.
394
405
.10.1016/j.nucengdes.2018.07.023
31.
Jaradat
,
S. Q.
, and
Alajo
,
A. B.
,
2017
, “
Studies on the Liquid Fluoride Thorium Reactor: Comparative Neutronics Analysis of MCNP6 Code With SRAC95 Reactor Analysis Code Based on FUJI-U3-(0)
,”
Nucl. Eng. Des.
,
314
, pp.
251
255
.10.1016/j.nucengdes.2017.02.013
32.
Ashraf
,
O.
,
Rykhlevskii
,
A.
,
Tikhomirov
,
G. V.
, and
Huff
,
K. D.
,
2020
, “
Strategies for Thorium Fuel Cycle Transition in the SD-TMSR
,”
Ann. Nucl. Energy
,
148
, p.
107656
.10.1016/j.anucene.2020.107656
33.
Rykhlevskii
,
A.
,
Lindsay
,
A.
, and
Huff
,
K. D.
,
2017
, “
Full-Core Analysis of Thorium-Fueled Molten Salt Breeder Reactor Using the SERPENT 2 Monte Carlo Code
,”
Transactions of the American Nuclear Society
, Vol.
117
, Washington, DC, Oct. 29–Nov. 2, pp.
1343
1346
.https://arfc.github.io/papers/rykhlevskii_full-core_2017.pdf
34.
Lamarsh
,
J. R.
,
2002
,
Introduction to Nuclear Reactor Theory
,
Addison-Wesley Publishing Company
, Boston, MA.
35.
Hartanto
,
D.
,
Alshamsi
,
A.
,
Alsuwaidi
,
A.
,
Bilkhair
,
A.
,
Hukal
,
H. A.
, and
Zubair
,
M.
,
2020
, “
Neutronics Assessment of Accident-Tolerant Fuel in Advanced Power Reactor 1400 (APR1400)
,”
Atom Indones.
,
46
(
3
), p.
177
.10.17146/aij.2020.1073
36.
Gentry
,
C.
,
Kim
,
K. S.
, and
Maldonado
,
G. I.
,
2018
, “
Two-Step Procedure for Liquid-Salt-Cooled-Reactor Analysis
,”
Nucl. Technol.
,
204
(
3
), pp.
299
317
.10.1080/00295450.2018.1486158
You do not currently have access to this content.