Abstract

Small modular reactors (SMRs) are actively being considered for use in Canada. Some proposed SMRs can make use of solar salt as an intermediate coolant for a heat storage system. The development of thermalhydraulic simulation tools is one of the key capabilities needed to examine the performance of SMRs and license this class of reactors. This article summarizes the implementation of molten solar salt fluid properties into the algorithm for analysis of network thermalhydraulics (ARIANT) and uses this code to simulate a high temperature gas-cooled SMR with helium and solar salt as its primary and secondary coolants during a pressurized loss of forced circulation (PLOFC) event. This work demonstrates the ability of ARIANT to simulate transient events in a two-loop reactor system consisting of helium and solar salt as coolants and helps to establish ARIANT as a tool for SMR analysis.

References

1.
Davis
,
C. B.
,
2005
, “
Implementation of Molten Salt Properties Into RELAP5-3D/ATHENA
,”
Idaho National Engineering and Environmental Laboratory
, Idaho Falls, ID, Report No. INEEL/EXT-05-02658, p.
30
.
2.
Ferri
,
R.
,
Cammi
,
A.
, and
Mazzei
,
D.
,
2008
, “
Molten Salt Mixture Properties in RELAP5 Code for Thermodynamic Solar Applications
,”
Int. J. Therm. Sci.
,
47
(
12
), pp.
1676
1687
.10.1016/j.ijthermalsci.2008.01.007
3.
D'Aguanno
,
B.
,
Karthik
,
M.
,
Grace
,
A. N.
, and
Floris
,
A.
,
2018
, “
Thermostatic Properties of Nitrate Molten Salts and Their Solar and Eutectic Mixtures
,”
Sci. Rep.
,
8
(
1
), p.
10485
.10.1038/s41598-018-28641-1
4.
Serrano-López
,
R.
,
Fradera
,
J.
, and
Cuesta-López
,
S.
,
2013
, “
Molten Salts Database for Energy Applications
,”
Chem. Eng. Process. Process Intensif.
,
73
, pp.
87
102
.10.1016/j.cep.2013.07.008
5.
Nissen
,
D. A.
,
1982
, “
Thermophysical Properties of the Equimolar Mixture NaN03-KNO3 From 300 to 600 °C
,”
J. Chem. Eng. Data
,
27
(
3
), pp.
269
273
.10.1021/je00029a012
6.
Janz
,
G. J.
,
Krebs
,
U.
,
Siegenthaler
,
H. F.
, and
Tomkins
,
R. P. T.
,
1972
, “
Molten Salts: Volume 3 Nitrates, Nitrites, and Mixtures: Electrical Conductance, Density, Viscosity, and Surface Tension Data
,”
J. Phys. Chem. Ref. Data
,
1
(
3
), pp.
581
746
.10.1063/1.3253103
7.
Anagnostopoulos
,
A.
,
Alexiadis
,
A.
, and
Ding
,
Y.
,
2019
, “
Molecular Dynamics Simulation of Solar Salt (NaNO3-KNO3) Mixtures
,”
Sol. Energy Mater. Sol. Cells
,
200
, p.
109897
.10.1016/j.solmat.2019.04.019
8.
Nunes
,
V. M. B.
,
Queirós
,
C. S.
,
Lourenço
,
M. J. V.
,
Santos
,
F. J. V.
, and
Nieto de Castro
,
C. A.
,
2016
, “
Molten Salts as Engineering Fluids – A Review: Part I. Molten Alkali Nitrates
,”
Appl. Energy
,
183
, pp.
603
611
.10.1016/j.apenergy.2016.09.003
9.
Bonk
,
A.
, and
Bauer
,
T.
,
2022
, “
Solar Salt - Thermal Property Analysis - Extended Version: Report on Thermo-Physical Properties of Binary NaNO3-KNO3 Mixtures in a Range of 55-65 wt% NaNO3
,”
DLR-Forschungsbericht, Stuttgart & Cologne
, Report No. DLR-FB-2022-4.
10.
Sun
,
Z.
,
Hu
,
C.
,
Ni
,
H.
,
Lu
,
G.
,
Song
,
X.
, and
Yu
,
J.
,
2018
, “
Influence of Impurity SO42 on the Thermal Performance of Molten Nitrates Used for Thermal Storage
,”
Energy Technol.
,
6
(
10
), pp.
2065
2073
.10.1002/ente.201800172
11.
Xiong
,
Y.
,
Wang
,
Z.
,
Xu
,
P.
,
Wu
,
Y.
,
Ding
,
Y.
, and
Ma
,
C.
,
2018
, “
Enhancing Thermal Properties of Mono and Binary Nitrates by Adding SiO2 Nanoparticles
,”
CIESC J.
,
69
(
10
), pp.
4418
4426
.https://hgxb.cip.com.cn/EN/Y2018/V69/I10/4418
12.
Zhang
,
Y.
,
Li
,
J.
,
Gao
,
L.
, and
Wang
,
M.
,
2020
, “
Nitrate Based Nanocomposite Thermal Storage Materials: Understanding the Enhancement of Thermophysical Properties in Thermal Energy Storage
,”
Sol. Energy Mater. Sol. Cells
,
216
, p.
110727
.10.1016/j.solmat.2020.110727
13.
Mohammad
,
M. B.
,
Brooks
,
G. A.
, and
Rhamdhani
,
M. A.
,
2018
, “
Premelting, Melting, and Degradation Properties of Molten Alkali Nitrates: LiNO3, NaNO3, KNO3, and Binary NaNO3-KNO3
,”
Metall. Mater. Trans. B
,
49
(
3
), pp.
1482
1498
.10.1007/s11663-018-1205-z
14.
International Atomic Energy Agency
,
2020
, “
Advances in Small Modular Reactor Technology Developments
,”
International Atomic Energy Agency
,
Austria
, p.
354
.
15.
Chen
,
Z.
,
Wang
,
Y.
, and
Zhang
,
Y.
,
2020
, “
Discussion on the Accident Behavior and Accident Management of the HTGR
,”
Nucl. Eng. Des.
,
360
, p. 110497.10.1016/j.nucengdes.2019.110497
16.
Lu
,
C.
, and
Brown
,
N. R.
,
2019
, “
Fully Ceramic Microencapsulated Fuel in Prismatic High-Temerature Gas-Cooled Reactors: Design Basis Accidents and Fuel Cycle Cost
,”
Nucl. Eng. Des.
,
347
, pp.
108
121
.10.1016/j.nucengdes.2019.03.022
17.
Wang
,
C.
,
Sun
,
X.
, and
Sabharwall
,
P.
,
2020
, “
CFD Investigation of MHTGR Natural Circulation and Decay Heat Removal in P-LOFC Accident
,”
Front. Energy Res.
,
8
, epub.10.3389/fenrg.2020.00129
18.
Zheng
,
Y.
,
Stempniewicz
,
M. M.
,
Chen
,
Z.
, and
Shi
,
L.
,
2018
, “
Study on the DLOFC and PLOFC Accidents of the 200 MWe Pebble-Bed Modular High Temperature Gas-Cooled Reactor With TINTE and SPECTRA Codes
,”
Ann. Nucl. Energy
,
120
, pp.
763
777
.10.1016/j.anucene.2018.06.041
19.
Demkowicz
,
P. A.
,
Liu
,
B.
, and
Hunn
,
J. D.
,
2019
, “
Coated Particle Fuel: Historical Perspectives and Current Progress
,”
J. Nucl. Mater.
,
515
, pp.
434
450
.10.1016/j.jnucmat.2018.09.044
20.
Olson
,
D. J.
,
1974
, “
Single-Phase and Two-Phase Performance Characteristics of the Mod-1 Semiscale Pump Under Steady State and Transient Fluid Conditions
,” Aerojet Nuclear Company, Idaho Falls, ID, Report No.
ANCR-1165
.
21.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
368
.
22.
Dong
,
X.
,
Zhang
,
S.
,
Liu
,
L.
, and
Zhang
,
Y.
,
2023
, “
Experimental Thermal Study of Solar Salt and Subcritical Pressure Water in a Shell and Tube Heat Exchanger
,”
Int. J. Therm. Sci.
,
186
, p.
108150
.10.1016/j.ijthermalsci.2023.108150
23.
Liu
,
Q.
, and
Fukuda
,
K.
,
2002
, “
Transient Heat Transfer for Forced Convection Flow of Helium Gas
,”
JSME Int. J. Ser. B Fluids Therm. Eng.
,
45
(
3
), pp.
559
564
.10.1299/jsmeb.45.559
24.
Vegendla
,
P.
,
Hu
,
R.
, and
Yuan
,
H.
,
2018
, “
Modeling and Simulations of Thermal-Fluid Phenomena Related to Pressurized Conduction Cooldown in High Temperature Gas Reactor
,”
USDOE Office of Nuclear Energy
,
Argonne, IL
, Report No.
ANL-18/33
.
You do not currently have access to this content.