Abstract

Challenges with safeguarding molten salt reactor (MSR) designs have prompted the search for enhanced safeguards technologies and revised safeguards materials control & accountancy (MC&A) approaches. A molten salt sampling system is a subsystem being developed to help support facility MC&A in future MSRs by removing salt samples from the primary fuel and/or coolant salt loop of an MSR for chemical and isotopic analysis. To consider the safeguards implications of this molten salt sampling system early in the design process, we employed a safeguards by design approach during the development of a prototype molten salt sampling system. Specifically, we identified and tailored a checklist approach to systematically evaluate the design against recognized safeguards and security attributes. This technical brief describes the molten salt sampling system design and operational concept upon which we applied the safeguards by design methodology, conveys the methods we used to employ the safeguards by design approach on the molten salt sampling system design, and discusses the preliminary results and design insights gained from this safeguards by design assessment.

References

1.
Rogelj
,
J.
,
Shindell
,
D.
,
Jiang
,
K.
,
Fifita
,
S.
,
Forster
,
P.
,
Ginzburg
,
V.
,
Handa
,
C.
,
Kheshgi
,
H.
,
Kobayashi
,
S.
,
Kriegler
,
E.
,
Mundaca
,
L.
,
Séférian
,
R.
, and
Vilariño
,
M. V.
,
2018
, “
Mitigation Pathways Compatible With 1.5 °C in the Context of Sustainable Development
,”
Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty
,
Masson-Delmotte
,
V.
,
P.
Zhai
,
H.-O.
Pörtner
,
D.
Roberts
,
J.
Skea
,
P. R.
Shukla
,
A.
Pirani
,
W.
Moufouma-Okia
, et al.,
Cambridge University Press
,
Cambridge, UK and New York
, pp.
93
174
.
2.
Nuclear Energy Innovation Capabilities Act of 2017
,
2018
, Pub. L. No. 115-248, accessed Jan. 5, 2024, https://www.govinfo.gov/app/details/PLAW-115publ248#:~:text=An%20act%20to%20enable%20civilian,science%2C%20and%20for%20other%20purposes
3.
U.S. Nuclear Regulatory Commission
,
2008
, “
Policy Statement on the Regulation of Advanced Reactors
,”
Federal Register
,
73
(
199
), p.
60612
.
4.
Flanagan
,
G. E.
,
Holcomb
,
D. E.
, and
Poore
,
W. P.
, III
,
2018
, “
Molten Salt Reactor Fuel Qualification Considerations and Challenges
,”
Oak Ridge National Laboratory
,
Oak Ridge, TN
, Report No. ORNL/LTR-2018/1045.
5.
Elsheikh
,
B. M.
,
2013
, “
Safety Assessment of Molten Salt Reactors in Comparison With Light Water Reactors
,”
J. Radiat. Res. Appl. Sci.
,
6
(
2
), pp.
63
70
.10.1016/j.jrras.2013.10.008
6.
Serp
,
J.
,
Allibert
,
M.
,
Beneš
,
O.
,
Delpech
,
S.
,
Feynberg
,
O.
,
Ghetta
,
V.
,
Heuer
,
D.
,
Holcomb
,
D.
,
Ignatiev
,
V.
,
Kloosterman
,
J. L.
,
Luzzi
,
L.
,
Merle-Lucotte
,
E.
,
Uhlíř
,
J.
,
Yoshioka
,
R.
, and
Zhimin
,
D.
,
2014
, “
The Molten Salt Reactor (MSR) in Generation IV: Overview and Perspectives
,”
Prog. Nucl. Energy
,
77
, pp.
308
319
.10.1016/j.pnucene.2014.02.014
7.
Kovacic
,
D. N.
,
Worrall
,
A.
,
Worrall
,
L. G.
,
Flanagan
,
G. F.
,
Holcomb
,
D. E.
,
Bari
,
R.
,
Cheng
,
L.
,
Farley
,
D.
, and
Sternat
,
M.
,
2018
, “
Safeguards Challenges for Molten Salt Reactors
,”
Proceedings of the Institute of Nuclear Material Management Annual Meeting
,
Baltimore, MD
,
July 22–26, pp. 1573-1581
.
8.
Beddingfield
,
D. H.
, and
Hori
,
M.
,
2007
, “
Nuclear Safeguards Challenges at Reactor Types That Defy Traditional Item Counting
,”
JAEA-IAEA Workshop on Advanced Safeguards Technology for the Future Nuclear Fuel Cycle
,
Tokaimura, Japan
,
Nov. 13–16, 2007
, pp.
13
16
.
9.
International Atomic Energy Agency
,
2014
, “
International Safeguards in the Design of Nuclear Reactors
,”
International Atomic Energy Agency
, Vienna, Austria, Report No. NP-T-2.9.
10.
Hogue
,
K. K.
,
Gibbs
,
P.
,
Dion
,
M.
, and
Poore
,
M.
,
2021
, “
Domestic Safeguards Material Control and Accountancy Considerations for Molten Salt Reactors
,”
Oak Ridge National Laboratory
,
Oak Ridge, TN
, Report No. ORNL/SPR/150504.
11.
Kim
,
L. K.
,
2017
, “
Safeguards-by-Design for Advanced Nuclear Systems
,”
Center for International and Security Studies at Maryland
,
College Park, MD
, Report.https://dgi.umd.edu/researchimpact/publications/safeguards-design-advanced-nuclear-systems
12.
Sevini
,
F.
,
Renda
,
G.
, and
Sidlova
,
V.
,
2011
, “
A Safeguardability Check-List for Safeguards by Design
,”
ESARDA Bull.
,
46
, pp.
79
88
.
13.
Harkema
,
M.
,
Marotta
,
P.
, and
Krahn
,
S.
,
2022
, “
Model Refinement Studies for Molten Salt Freeze Port Conceptual Design Using COMSOL
,” Trans. Am. Nucl. Soc.,
126
(
1
), pp.
87
90
.10.13182/T126-38272
14.
Gallaher
,
R. B.
,
1971
, “
Operation of the Sampler-Enricher in the Molten Salt Reactor Experiment
,”
Oak Ridge National Laboratory
,
Oak Ridge, TN
, Report No. ORNL-TM-3524.
15.
Chisholm
,
B.
,
Krahn
,
S. L.
, and
Sowder
,
A. G.
,
2020
, “
A Unique Molten Salt Reactor Feature – The Freeze Valve System: Design, Operating Experience, and Reliability
,”
Nucl. Eng. Des.
,
368
, p.
110803
.10.1016/j.nucengdes.2020.110803
16.
Tiberga
,
M.
,
Shafer
,
D.
,
Lathouwers
,
D.
,
Rohde
,
M.
, and
Kloosterman
,
J. L.
,
2019
, “
Preliminary Investigation on the Melting Behavior of a Freeze-Valve for the Molten Salt Fast Reactor
,”
Ann. Nucl. Energy
,
132
, pp.
544
554
.10.1016/j.anucene.2019.06.039
17.
Compere
,
E. L.
,
Kirslis
,
S. S.
,
Bohlmann
,
E. G.
,
Blankenship
,
F. F.
, and
Grimes
,
W. R.
,
1975
, “
Fission Product Behavior in the Molten Salt Reactor Experiment
,”
Oak Ridge National Laboratory
,
Oak Ridge, TN
, Report No. ORNL-4865.
18.
Harkema
,
M.
,
Krahn
,
S.
, and
Marotta
,
P.
,
2022
, “
Fuel Salt Sampling and Enriching Technology Design Development—Interfacing Systems Analysis and Project Update
,” Trans. Am. Nucl. Soc.,
126
(
1
), pp.
688
691
.10.13182/T126-38288
19.
Riley
,
B. J.
,
McFarlane
,
J.
,
DelCul
,
G. D.
,
Vienna
,
J. D.
,
Contescu
,
C. I.
, and
Forsberg
,
C. W.
,
2019
, “
Molten Salt Reactor Waste and Effluent Management Strategies: A Review
,”
Nucl. Eng. Des.
,
345
, pp.
94
109
.10.1016/j.nucengdes.2019.02.002
20.
Bahri
,
C.
,
Al-Areqi
,
W.
,
Ruf
,
M.
, and
Majid
,
A.
,
2017
, “
Characteristic of Molten Fluoride Salt System LiF-BeF2 (Flibe) and LiF-NaF-KF (Flinak) as Coolant and Fuel Carrier in Molten Salt Reactor (MSR)
,”
AIP Conf. Proc.
,
1799
(
1
), p.
040008
.10.1063/1.4972932
21.
Dyer
,
F. F.
,
Emery
,
J. F.
,
Robinson
,
L.
, and
Teasley
,
N. A.
,
1987
, “
Design and Use of the ORNL HFIR Pneumatic Tube Irradiation Systems
,”
International Workshop Activation Analysis With Short-Lived Nuclides
,
Vienna, Austria
,
Sept. 21–24, 1987,
Paper No. CONF-8709134--1.
22.
International Atomic Energy Agency
,
2022
, “
IAEA Safeguards Glossary, 2022 Edition
,”
International Atomic Energy Agency
, Vienna, Austria, Report No. IAEAL 22–01513.
23.
Thoma
,
R. E.
,
1971
, “
Chemical Aspects of MSRE Operations
,”
Oak Ridge National Laboratory
,
Oak Ridge, TN
, Report No. ORNL-4658.
24.
Fratoni
,
M.
,
Shen
,
D.
,
Ilas
,
G.
, and
Powers
,
J.
,
2020
, “
Molten Salt Reactor Experiment Benchmark Evaluation
,” University of California/Oak Ridge National Laboratory, Berkeley, CA/Oak Ridge, TN, Report No. DOE-UCB-8542.
25.
Burke
,
P.
,
2019
, “
An Analysis of the MSRE U-233 Initial Criticality for Benchmark Problem Development
,” Master's thesis,
Georgia Institute of Technology
,
Atlanta, GA
.
26.
U.S. Nuclear Regulatory Commission
, “
Safeguard Categories of SNM
,”
U.S. Nuclear Regulatory Commission
, Washington, DC, last modified Mar. 11, 2020, accessed Aug. 18, 2023, https://www.nrc.gov/security/domestic/mca/snm.html
27.
Cojazzi
,
G. G. M.
,
Renda
,
G.
, and
Sevini
,
F.
,
2008
, “
Proliferation Resistance Characteristics of Advanced Nuclear Energy Systems: A Safeguardability Point of View
,”
ESARDA Bull.
,
39
, pp.
31
40
.
You do not currently have access to this content.