Abstract

Optimization of dynamical multibeam neutron cancer therapy has recently been shown to be possible via employment of the beam frequencies of neutron waves as a control variable. The concepts of transfer functions (TF), addressed in this paper, can be essential ingredients of such optimization. Accordingly, the paper studies the dynamics of a one-dimensional (1D) monochromatic neutron density wave generated by time modulation of a boundary neutron current. It is demonstrated that a certain temporal transfer function (TTF) of both parabolic (diffusion) and low frequency hyperbolic (P−1 transport) interfacial neutron density wave happens to be frequency noninvariant with a vibrating boundary neutron current. It is proved that, only at high frequencies, both parabolic and hyperbolic interfacial neutron waves turn out to have a fully frequency-invariant and time-invariant temporal transfer function relative to such a vibrating neutron beam at the boundary. The frequency response of an associated complex transfer function is studied and demonstrated to change behavior, from a lag compensator to a fixed gain amplifier, with changing the frequency, neutron absorption and employed theory for neutron diffusion. A highlight of this paper is its illustration that mere continuity of these transfer functions can be a reflection of the correctness of the transport theory employed for modeling the neutron density waves.

References

1.
Weinberg
,
A. M.
, and
Wigner
,
E. P.
,
1958
,
The Physical Theory of Neutron Chain Reactors
,
University of Chicago Press
,
Chicago
, IL, p.
732
.
2.
Bekurts
,
K. H.
, and
Wirtz
,
K.
,
1964
,
Neutron Physics
,
Springer-Verlag
,
Berlin
, p.
454
.
3.
Soodak
,
H.
, ed.,
1962
,
Reactor Handbook
,
Interscience
,
New York
, p.
230
.
4.
Perez
,
R. B.
, and
Uhrig
,
R. E.
,
1963
, “
Propagation of Neutron Waves in Moderating Media
,”
Nucl. Sci. Eng.
,
17
(
1
), pp.
90
100
.10.13182/NSE63-A17214
5.
Ohanian
,
M. J.
,
Booth
,
R. S.
, and
Perez
,
R. B.
,
1967
, “
Eigenfunction Analysis of Neutron-Wave Propagation in Moderating Media
,”
Nucl. Sci. Eng.
,
30
(
1
), pp.
95
103
.10.13182/NSE67-A17246
6.
Kumar
,
A.
,
Ahmed
,
F.
, and
Kothari
,
L. S.
,
1969
, “
Neutron Wave Propagation in Crystalline Modearatos-IV: A Two-Group Study
,”
Nucl. Sci. Eng.
,
37
(
3
), pp.
358
367
.10.13182/NSE69-A19112
7.
Hayasaka
,
H.
, and
Takeda
,
S.
,
1968
, “
Study of Neutron Wave Propagation
,”
J. Nucl. Sci. Technol.
,
5
(
11
), pp.
564
571
.10.1080/18811248.1968.9732515
8.
Yamagishi
,
T.
,
Tezuka
,
M.
, and
Sekiya
,
T.
,
1969
, “
Approximate Treatments of Neutron Wave Propagation Problems in Three-Dimensional System
,”
J. Nucl. Sci. Technol.
,
6
(
11
), pp.
611
621
.10.1080/18811248.1969.9732960
9.
Haidar
,
N. H. S.
,
2021
, “
Neutron Density Waves Versus Temperature Waves
,”
Int. J. Adv. Nucl. React. Des. Technol.
,
3
, pp.
206
212
.10.1016/j.jandt.2021.09.004
10.
Hoshino
,
T.
, and
Wakabayashi
,
J.
,
1968
, “
Calculation of Space-Dependent Reactor Transfer Function by Few-Pole Expansion Method
,”
J. Nucl. Sci. Technol.
,
5
(
5
), pp.
229
235
.10.1080/18811248.1968.9732443
11.
Williams
,
M. M. R.
, and
Eaton
,
M. D.
,
2018
, “
Spatial Effects in Low Neutron Source Start-Up and Associated Stochastic Phenomena
,”
Ann. Nucl. Energy
,
111
, pp.
616
634
.10.1016/j.anucene.2017.09.015
12.
Geslot
,
B.
,
Gruel
,
A.
,
Bréaud
,
S.
,
Leconte
,
P.
, and
Blaise
,
P.
,
2018
, “
Innovative Hybrid Pile Oscillator Technique in the Minerve Reactor: Open Loop Versus Closed Loop
,”
IEEE Trans. Nucl. Sci.
,
65
(
11
), pp.
2767
2775
.10.1109/TNS.2018.2874690
13.
Sanda
,
T.
,
Makido
,
M.
,
Otani
,
H.
,
Sano
,
K.
,
Yamamoto
,
H.
, and
Tamura
,
S.
,
1983
, “
Transfer Function Measurements in Joyo by Pile Oscillator Method
,”
J. Nucl. Sci. Technol.
,
20
(
3
), pp.
199
212
.10.1080/18811248.1983.9733382
14.
Stacey
,
W. M.
,
2007
,
Nuclear Reactor Physics
,
Wiley
,
New York
, p.
738
.
15.
Haidar
,
N. H. S.
,
2019
, “
An Additive Separation of Variables 3D Solution to a Dynamical BVP for Neutron Cancer Therapy
,”
Int. J. Dyn. Syst. Differ. Equations
,
9
(
2
), pp.
140
163
.10.1504/IJDSDE.2019.100563
16.
Haidar
,
N. H. S.
,
2019
, “
Optimization of Two Opposing Neutron Beams Parameters in Dynamical (B/Gd) Neutron Cancer Therapy
,”
Nucl. Energy Technol.
,
5
(
1
), pp.
1
7
.10.3897/nucet.5.32239
17.
Haidar
,
N. H. S.
,
2020
, “
Advantage of a Dynamical (B/Gd) Neutron Beam Cancer Therapy Over a Stationary Therapy
,”
Nucl. Phys. Atom. Energy
,
21
(
1
), pp.
101
105
.10.15407/jnpae2020.01.101
18.
Haidar
,
N. H. S.
,
2020
, “
A Resonated and Synchrophased Three Beams Neutron Cancer Therapy Installation
,”
ASME J. Nucl. Rad. Sci.
,
6
(
3
), p.
034501
.10.1115/1.4045395
19.
Truxal
,
J. G.
,
1955
,
Automatic Feedback Control System Synthesis
,
McGraw-Hill
,
New York
, p.
875
.
20.
Shinners
,
S. M.
,
1978
,
Modern Control System Theory & Applications
,
Addison-Wesley
,
Reading, MA
, p.
558
.
21.
Netushil
,
A.
, ed.,
1978
,
Theory of Automatic Control
,
Mir Publishers
,
Moscow
, p.
895
.
22.
Morris
,
K. A.
,
1999
, “
Justification of Input/Output Methods for Systems With Unbounded Control & Observation
,”
IEEE Trans. Autom. Control
,
44
(
1
), pp.
81
85
.10.1109/9.739075
23.
Liu
,
J.
,
Zhou
,
Y.-X.
, and
Deng
,
Z.-S.
,
2002
, “
Sinusoidal Heating Method to Noninvasively Measure Tissue Perfusion
,”
IEEE Trans. Biomed. Eng.
,
49
(
8
), pp.
867
877
.10.1109/TBME.2002.800769
24.
Haidar
,
N. H. S.
,
2022
, “
On Physical and Mathematical Wave Fronts in Temperature Waves
,”
Transylv. J. Math. Mech.
,
14
(
2
), pp.
139
158
.
25.
Salazar
,
A.
,
2006
, “
Energy Propagation of Thermal Waves
,”
Eur. J. Phys.
,
27
(
6
), pp.
1349
1355
.10.1088/0143-0807/27/6/009
26.
Mandelis
,
A.
,
2000
, “
Diffusion Waves and Their Uses
,”
Phys. Today
,
53
(
8
), pp.
29
34
.10.1063/1.1310118
27.
Smyshlyaev
,
A.
, and
Krstic
,
M.
,
2003
, “
Explicit State and Output Boundary Controllers for PDEs
,”
J. Autom. Control
,
13
(
2
), pp.
1
9
.10.2298/JAC0302001S
28.
Zwart
,
H.
,
2004
, “
Transfer Functions for Infinite-Dimensional Systems
,”
Syst. Control Lett.
,
52
(
3–4
), pp.
247
255
.10.1016/j.sysconle.2004.02.002
29.
Bartecki
,
K.
,
2013
, “
A General Tranfer Function Representation for a Class of Hyperbolic Distributed Parameter Systems
,”
Int. J. Math. Comput. Sci.
,
23
(
2
), pp.
291
307
.10.2478/amcs-2013-0022
30.
Romanovski
,
R. K.
, and
Ivanchenko
,
T. V.
,
2011
, “
Hyperbolic Model for Neutron Diffusion in a Homogeneous Moderator
,”
Sibirskii Zh. Ind.'noi Matematiki (Russ.)
,
14
(
4
), pp.
76
85
.http://www.mathnet.ru/eng/agreement
31.
Gomez
,
H.
,
Colominas
,
I.
,
Navarrina
,
F.
,
Paris
,
J.
, and
Casteleiro
,
M.
,
2010
, “
A Hyperbolic Theory for Advection-Diffusion Problems: Mathematical Foundations and Numerical Modeling
,”
Arch. Comput. Meth. Eng.
,
17
(
2
), pp.
191
211
.10.1007/s11831-010-9042-5
32.
Bell
,
G. I.
, and
Glasstone
,
S.
,
1970
,
Nuclear Reactor Theory
,
Van Nostrand
,
New York, NY
, p.
619
.
33.
Niderauer
,
G. F.
,
1967
, “
Neutron Kinetics Based on the Equation of Telegraphy
,”
Ph.D. dissertation
,
Iowa State University
, Ames, IA.10.31274/rtd-180813-1688
34.
Abouelregal
,
A. E.
, and
Marin
,
M.
,
2020
, “
The Response of Nanobeams With Temperature-Dependent Properties Using State-Space Method Via Modified Couple Stress Theory
,”
Symmetry
,
12
(
8
), p.
1276
.10.3390/sym12081276
35.
Scutaru
,
L. M.
,
Vlase
,
S.
,
Marin
,
M.
, and
Modrea
,
A.
,
2020
, “
New Analytical Method Based on Dynamic Response of Planar Mechanical Elastic Systems
,”
Boundary Value Probl.
,
1
(
104
), pp.
1
16
.10.1186/s13661-020-01401-9
You do not currently have access to this content.