One-dimensional (1D) sensitivity computations were carried out for air–water countercurrent flows in a 1/15-scale model of the hot leg and a 1/10-scale model of the pressurizer surge line in a pressurized water reactor (PWR) to generalize the prediction method for countercurrent flow limitation (CCFL) characteristics in slightly inclined pipes with elbows. In the 1D model, the wall friction coefficient fwG of single-phase gas flows was used. The interfacial drag coefficient of fi=0.03, an appropriate adjustment factor of NwL=6 for the wall friction coefficient fwL of single-phase liquid flows (NwG=1 for fwG of single-phase gas flows), and an appropriate adjustment factor of Nde=6 for the pressure loss coefficient ζe of elbows in single-phase flows were determined to give good agreement between the computed and measured CCFL characteristics. The adjusted factors were used to compute and then discuss effects of the inclination angle and diameter on CCFL characteristics.

References

References
1.
Richter
,
H. J.
,
Wallis
,
G. B.
,
Carter
,
K. H.
, and
Murphy
,
S. L.
,
1978
, “
Deentrainment and Countercurrent Air-Water Flow in a Model PWR Hot-Leg
,”
U.S. Nuclear Regulatory Commission
, .
2.
Mayinger
,
F.
,
Weiss
,
P.
, and
Wolfert
,
K.
,
1993
, “
Two-Phase Flow Phenomena in Full-Scale Reactor Geometry
,”
Nucl. Eng. Des.
,
145
(
1–2
), pp. 
47
61
.10.1016/0029-5493(93)90058-H
3.
Geffraye
,
G.
,
Bazin
,
P.
,
Pichon
,
P.
, and
Bengaouer
,
A.
,
1995
, “
CCFL in Hot Legs and Steam Generators and its Prediction With the CATHARE Code
,”
Proceedings of the 7th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-7)
,
Saratoga Springs NY, USA
,
Sept. 10–15
,
American Nuclear Society
,
La Grange Park, IL
, pp. 
815
826
.
4.
Al Issa
,
S.
, and
Macian
,
R.
,
2014
, “
Experimental Investigation of Countercurrent Flow Limitation (CCFL) in a Large-Diameter Hot-Leg Geometry: A Derailed Description of CCFL Mechanisms, Flow Patterns and High-quality HSC Imaging of the Interfacial Structure in a 1/3.9 Scale of PWR Geometry
,”
Nucl. Eng. Des.
,
280
, pp. 
550
563
.10.1016/j.nucengdes.2014.08.021
5.
Minami
,
N.
,
Nishiwaki
,
D.
,
Nariai
,
T.
,
Tomiyama
,
A.
, and
Murase
,
M.
,
2010
, “
Countercurrent Gas-Liquid Flow in a PWR Hot Leg under Reflux Cooling (I) Air-Water Tests for 1/15-Scale Model of a PWR Hot Leg
,”
J. Nuclear Sci. Technol.
,
47
(
2
), pp. 
142
148
.10.1080/18811248.2010.9711938
6.
Murase
,
M.
,
Tomiyama
,
A.
,
Lucas
,
D.
,
Kinoshita
,
I.
,
Utanohara
,
Y.
, and
Yanagi
,
C.
,
2012
, “
Correlation for Countercurrent Flow Limitation in a PWR Hot Leg
,”
J. Nucl. Sci. Technol.
,
49
(
4
), pp. 
398
407
.10.1080/00223131.2012.669241
7.
Wallis
,
G. B.
,
1969
,
One-Dimensional Two-Phase Flow
,
McGraw Hill
,
New York
, pp. 
320
339
.
8.
Al Issa
,
S.
, and
Macian
,
R.
,
2011
, “
A Review of CCFL Phenomena
,”
Ann. Nucl. Energy
,
38
(
9
), pp. 
1795
1819
.10.1016/j.anucene.2011.04.021
9.
Takeuchi
,
K.
,
Young
,
M. Y.
, and
Gagnon
,
A. F.
,
1999
, “
Flooding in the Pressurizer Surge Line of AP600 Plant and Analyses of APEX data
,”
Nucl. Eng. Des.
,
192
(
1
), pp. 
45
58
.10.1016/S0029-5493(99)00084-9
10.
Cllum
,
W.
,
Reid
,
J.
, and
Vierow
,
K.
,
2012
, “
Water Inlet Subcooling Effects on Flooding With Steam and Water in a Large Diameter Vertical Tube
,”
Proceedings of the 2012 Japan-U.S. Seminar on Two-Phase Flow Dynamics
,
June 7–12
,
Tokyo University Marine Science and Technology
,
Tokyo
, T09.
11.
Futatsugi
,
T.
,
Yanagi
,
C.
,
Murase
,
M.
,
Hosokawa
,
S.
, and
Tomiyama
,
A.
,
2012
, “
Countercurrent Air-Water Flow in a Scale-Down Model of a Pressurizer Surge Line
,”
Sci. Technol. Nucl. Installations
,
2012
(
2012
), pp. 
1
7
.10.1155/2012/174838
12.
Doi
,
T.
,
Futatsugi
,
T.
,
Murase
,
M.
,
Hayashi
,
K.
,
Hosokawa
,
S.
, and
Tomiyama
,
A.
,
2012
, “
Countercurrent Flow Limitation at the Junction between the Surge Line and the Pressurizer of a PWR
,”
Sci. Technol. Nucl. Installations
,
2012
(
2012
), pp. 
1
10
.10.1155/2012/754724
13.
Ohnuki
,
A.
,
Adachi
,
H.
, and
Murao
,
Y.
,
1988
, “
Scale Effects on Countercurrent Gas-Liquid Flow in a Horizontal Tube Connected to an Inclined Riser
,”
Nucl. Eng. Des.
,
107
(
3
), pp. 
283
294
.10.1016/0029-5493(88)90036-2
14.
Kinoshita
,
I.
,
Murase
,
M.
,
Utanohara
,
Y.
,
Lucas
,
D.
,
Vallée
,
C.
, and
Tomiyama
,
A.
,
2014
, “
Effects of Shape and Size on Countercurrent Flow Limitation in Flow Channels Simulating a PWR Hot Leg
,”
Nucl. Technol.
,
187
(
1
), pp. 
44
56
.
15.
Taitel
,
Y.
, and
Dukler
,
A. E.
,
1976
, “
A Model for Predicting Flow Regime Transitions in Horizontal and Near Horizontal Gas-Liquid Flow
,”
AIChE J.
,
22
(
1
), pp. 
47
55
.10.1002/(ISSN)1547-5905
16.
JSME (Japan Society of Mechanical Engineers)
,
1991
,
JSME Mechanical Engineers’ Handbook
,
Maruzen
,
Tokyo
, pp. 
A5
79
(in Japanese).
17.
Minami
,
N.
,
Murase
,
M.
,
Nishiwaki
,
D.
, and
Tomiyama
,
A.
,
2008
, “
Countercurrent Gas-Liquid Flow in a Rectangular Channel Simulating a PWR Hot Leg (2) Analytical Evaluation of Countercurrent Flow Limitation
,”
Jpn. J. Multiphase Flow
,
22
(
4
), pp. 
413
422
(in Japanese).10.3811/jjmf.22.413
18.
Utanohara
,
Y.
,
Kinoshita
,
I.
,
Murase
,
M.
,
Minami
,
N.
,
Nariai
,
T.
, and
Tomiyama
,
A.
,
2011
, “
Numerical Simulation Using CFD Software of Countercurrent Gas-liquid Flow in a PWR Hot Leg under Reflux Condition
,”
Nucl. Eng. Des.
,
241
(
5
), pp. 
1643
1655
.10.1016/j.nucengdes.2011.01.051
You do not currently have access to this content.