Oxygen redistribution with a high-temperature gradient is an important fuel performance concern in fast-breeder reactor (FBR) and light-water reactor (LWR) (U,Pu)O2 fuel under irradiation, and affects fuels properties, power distribution, and fuel overall performance. This paper studies the burnup dependent oxygen and heat diffusion behavior in a fully coupled way within (U,Pu)O2 FBR and LWR fuels. The temperature change shows relatively larger impact on oxygen to metal (O/M) ratio redistribution rather than O/M ratio change on temperature, whereas O/M ratio redistributions show different trends for FBR and LWR fuels due to their different deviations from the stoichiometry of oxygen under high-temperature environments.

References

References
1.
Ishii
,
T.
, and
Asaga
,
T.
,
2001
, “
An Investigation of the Pu Migration Phenomena During Irradiation in Fast Reactor
,”
J. Nucl. Mater.
,
294
(
1–2
), pp. 
13
17
.
2.
Karahan
,
A.
, and
Buongiorno
,
J.
,
2010
, “
Modeling of Thermo-Mechanical and Irradiation Behavior of Mixed Oxide Fuel for Sodium Fast Reactors
,”
J. Nucl. Mater.
,
396
(
2–3
), pp. 
272
282
.
3.
Ishida
,
M.
,
Ogata
,
T.
, and
Kinoshita
,
M.
,
1993
, “
Constituent Migration for U-Pu-Zr Metallic Fast Reactor Fuel
,”
Nucl. Technol.
,
104
(
1
), pp. 
37
51
.
4.
Lassmann
,
K.
,
1987
, “
The OXIRED Model for Redistribution of Oxygen in Nonstoichiometric Uranium Plutonium Oxides
,”
J. Nucl. Mater.
,
150
(
1
), pp. 
10
16
.10.1016/0022-3115(87)90088-2
5.
Clement
,
C. F.
, and
Finnis
,
M. W.
,
1978
, “
Plutonium Redistribution in Mixed Oxide (U,Pu)O2 Nuclear Fuel Elements
,”
J. Nucl. Mater.
,
75
(
1
), pp. 
193
200
.10.1016/0022-3115(78)90044-2
6.
Mihaila
,
B.
,
Stan
,
M.
, and
Crapps
,
J.
,
2012
, “
Impact of Thermal Conductivity Models on the Coupling of Heat Transport and Oxygen Diffusion in UO2 Nuclear Fuel Elements
,”
J. Nucl. Mater.
,
430
(
1–3
), pp. 
221
228
.
7.
Mihaila
,
B.
,
Stan
,
M.
,
Crapps
,
J.
, and
Yun
,
D.
,
2013
, “
Impact of Thermal Conductivity Models on the Coupling of Heat Transport, Oxygen Diffusion, and Deformation in (U,Pu)O2x Nuclear Fuel Elements
,”
J. Nucl. Mater.
,
433
(
1–3
), pp. 
132
142
.
8.
Newman
,
C.
,
Hansen
,
G.
, and
Gaston
,
D.
,
2009
, “
Three Dimensional Coupled Simulation of Thermomechanics, Heat, and Oxygen Diffusion in UO2 Nuclear Fuel Rods
,”
J. Nucl. Mater.
,
392
(
1
), pp. 
6
15
.10.1016/j.jnucmat.2009.03.035
9.
Olander
,
D.
,
1976
,
Fundamental Aspects of Nuclear Reactor Fuel Elements
,
Technical Information Center, Energy Research and Development Administration
,
Washington, DC
.
10.
Ramirez
,
J.
,
Stan
,
M.
, and
Cristea
,
P.
,
2006
, “
Simulations of Heat and Oxygen Diffusion in UO2 Nuclear Fuel Rods
,”
J. Nucl. Mater.
,
359
(
3
), pp. 
174
184
.10.1016/j.jnucmat.2006.08.018
11.
Martin
,
D. G.
,
1982
, “
A Re-Appraisal of the Thermal Conductivity of UO2 and Mixed (U, Pu) Oxide Fuels
,”
J. Nucl. Mater.
,
110
(
1
), pp. 
73
94
.10.1016/0022-3115(82)90410-X
12.
Philipponneau
,
Y.
,
1992
, “
Thermal Conductivity of (U,Pu)O2x Mixed Oxide Fuel
,”
J. Nucl. Mater.
,
188
(
6
), pp. 
194
197
.10.1016/0022-3115(92)90470-6
13.
Inoue
,
M.
,
Maeda
,
K.
,
Katsuyama
,
K.
,
Tanaka
,
K.
,
Mondo
,
K.
, and
Hisada
,
M.
,
2004
, “
Fuel-to-Cladding Gap Evolution and Its Impact on Thermal Performance of High Burnup Fast Reactor Type Uranium-Plutonium Oxide Fuel Pins
,”
J. Nucl. Mater.
,
326
(
1
), pp. 
59
73
.10.1016/j.jnucmat.2003.12.015
14.
Inoue
,
M.
,
2000
, “
Thermal Conductivity of Uranium-Plutonium Oxide Fuel for Fast Reactors
,”
J. Nucl. Mater.
,
282
(
2–3
), pp. 
186
195
.10.1016/S0022-3115(00)00407-4
15.
Inoue
,
M.
,
Abe
,
K.
, and
Sato
,
I.
,
2000
, “
A Method for Determining an Effective Porosity Correction Factor for Thermal Conductivity in Fast Reactor Uranium-Plutonium Oxide Fuel Pellets
,”
J. Nucl. Mater.
,
281
(
2–3
), pp. 
117
128
.10.1016/S0022-3115(00)00243-9
16.
Allison
,
C. M.
,
Berna
,
G. A.
,
Chambers
,
R.
, et al. ,
1993
, “
SCDAP/RELAP5/MOD3.1 Code Manual Volume IV: MATPRO—A Library of Materials Properties for Light-Water-Reactor Accident Analysis
,”
Idaho National Engineering Laboratory
, .
17.
Martin
,
D. G.
,
1988
, “
The Thermal Expansion of Solid UO2 and (U, Pu) Mixed Oxides—A Review and Recommendations
,”
J. Nucl. Mater.
,
152
(
2–3
), pp. 
94
101
.10.1016/0022-3115(88)90315-7
18.
Karahan
,
A.
and
Buongiorno
,
J.
,
2009
, “
Modeling of Thermo-Mechanical and Irradiation Behavior of Metallic and Oxide Fuels for Sodium Fast Reactors
,”
Massachusetts Institute of Technology
, , August.
19.
Baker
,
R. B.
,
Bard
,
F. E.
, and
Ethridge
,
J. L.
,
1990
, “
Performance of Fast Flux Test Facility Driver and Prototype Driver Fuels
,”
American Nuclear Society Winter Meeting
,
Washington, DC
, .
20.
Konno
,
K.
, and
Hirosawa
,
T.
,
2002
, “
Melting Temperature of Mixed Oxide Fuels for Fast Reactors
,”
J. Nucl. Sci. Technol.
,
39
(
7
), pp. 
771
777
.10.1080/18811248.2002.9715259
21.
Lovell
,
A. J.
,
Fox
,
G. L.
,
Sutherland
,
W. H.
, and
Hecht
,
S. L.
,
1986
, “
Demonstration of a High Burnup Heterogeneous Core Using Ferritic/Martensitic Materials
,”
International Conference on Reliable Fuels for Liquid Metal Reactors
,
American Nuclear Society (ANS)
,
Tucson, AZ
.
22.
Hales
,
J. W.
,
Baker
, and
R. B.
,
1986
, “
Evaluation of FFTF Reference Drive Fuel to 100 MWd/kg Burnup
,”
International Conference on Reliable Fuels for Liquid Metal Reactors
,
American Nuclear Society (ANS)
,
Tucson, AZ
.
You do not currently have access to this content.