Two mathematical models (a one-dimensional (1D) and a two-dimensional (2D)) were adopted to study, numerically, the thermal-hydrodynamic characteristics of flow inside the cooling channels of a nuclear thermal rocket (NTR) engine. In the present study, only one of the cooling channels of the reactor core is simulated. The 1D model adopted here assumes the flow in this cooling channel to be unsteady, compressible, turbulent, and subsonic. The governing equations of the compressible flow in the cooling channel are discretized using a second-order accurate (MacCormack) finite-difference scheme. The steady-state results of the proposed model were compared to the predictions by a commercial CFD code. The 2D CFD solution was obtained in two domains: the coolant (gaseous hydrogen) and the ZrC fuel cladding. The wall heat flux which varied along the channel length (as described by the nuclear variation in the nuclear power generation) was given as an input. Numerical experiments were carried out using both codes to simulate the thermal and hydrodynamic characteristics of the flow inside a single-cooling channel of the reactor for a typical Nuclear Engine for Rocket Vehicle Application (NERVA)-type NTR engine. It is concluded that both models predict successfully the steady-state axial distributions of temperature, pressure, density, and velocity of gaseous hydrogen flow in the NTR cooling channel.

References

References
1.
Koenig
,
D. R.
,
1986
, “
Experience Gained from the Space Nuclear Rocket Program (Rover)
,”
Los Alamos National Laboratory
, Los Alamos, NM, Los Alamos Report LA-10062-H.
2.
Fittje
,
J. E.
, and
Buehrle
,
R. J.
2006
, “
Conceptual Engine System Design for NERVA Derived 66.7KN and 111.2KN Thrust Nuclear Thermal Rockets
,”
STAIF 2006 Conference Proceedings
,
AIP
,
Melville, NY
, pp. 
502
513
.
3.
Fittje
,
J. E.
,
2007
, “
Upgrades to NESS (Nuclear Engine System Simulation Code)
,”
Proceedings of the 43th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
,
AIAA
,
Reston, VA
, Paper No. 2007-5620.
4.
Fittje
,
J. E.
, and
Schnitzler
,
B. G.
,
2008
, “
Evaluation of Recent Upgrades to the NESS (Nuclear Engine System Simulation) Code
,”
Proceedings of the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
,
AIAA
,
Reston, VA
, Paper No. 2008-4951.
5.
Emrich
,
W. J.
,
2006
, “
Non-Nuclear NTR Environmental Simulator
,”
STAIF 2006 Conference Proceedings
,
AIP
,
Melville, NY
, pp. 
531
536
.
6.
Finseth
,
J. L.
,
1991
, “
Rover Nuclear Rocket Engine Program: Overview of Rover Engine Tests
,” Final Report, Verdrup Technology, Inc.—MSFC Group, Contract NASA 8-37814, NASA, Marshall Space Flight Center, Science and Engineering.
7.
Wilson
,
M. N.
,
Wilhite
,
A.
,
Komar
, and
D. R.
,
2009
, “
Bimodal Nuclear Thermal Rocket Propulsion Systems for Human Exploration of Mars
,”
Proceedings of the 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
,
AIAA
,
Reston, VA
, Paper No. 2009-5311.
8.
Litchford
,
R. J.
,
Foote
,
J. P.
,
Hickman
,
R.
,
Dobson
,
C.
, and
Clifton
,
S.
,
2007
, “
Long Duration Hot Hydrogen Exposure of Nuclear Thermal Rocket Materials
,”
Proceedings of the 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
,
AIAA
,
Reston, VA
, Paper No. 2007-5625.
9.
Pelaccio
,
D. G.
,
El-Genk
,
M. S.
, and
Butt
,
D. P.
,
1994
, “
Hydrogen Corrosion Considerations of Carbide Fuels for Nuclear Thermal Propulsion Applications
,”
Proceedings of the 30th Joint Propulsion Conference and Exhibit
,
AIAA
,
Reston, VA
, Paper No. 1994-3166.
10.
Pelaccio
,
D. G.
,
El-Genk
,
M. S.
, and
Butt
,
D. P.
,
1995
, “
Hydrogen Corrosion Considerations of Carbide Fuels for Nuclear Thermal Propulsion Applications
,”
AIAA J. Propul. Power
,
11
(
6
), pp. 
1338
1348
.10.2514/3.23977
11.
Emrich
,
W. J.
,
2008
, “
Nuclear Rocket Element Environmental Simulator-NTREES
,”
STAIF 2008 Conference Proceedings
,
AIP
,
Melville, NY
, pp.
541
548
.
12.
Litchford
,
R. J.
,
Foote
,
J. P.
,
Clifton
,
W. B.
,
Hickman
,
R. R.
,
Wang
,
T.-S.
, and
Dobson
,
C. C.
,
2011
, “
Hyperthermal Environments Simulator for Nuclear Rocket Engine Development
,”
Proceedings of the Nuclear and Emerging Technologies for Space 2011 (NETS-2011)
,
AIAA
,
Reston, VA
, pp. 
666
675
.
13.
Swank
,
W. D.
,
Carmack
,
J.
,
Werner
,
J. E.
,
Pink
,
R. J.
,
Haggard
,
D. C.
, and
Johnson
,
R.
,
2007
, “
Hot Hydrogen Test Facility
,”
Proceedings of STAIF-2007
,
AIP
,
Melville
, Vol. 
880
, pp. 
380
388
.
14.
Walton
,
J. T.
,
1992
, “
Program ELM: A Tool for Thermal Hydraulic Analysis of Solid-Core Nuclear Rocket Fuel Elements
,”
Lewis Research Center
, Cleveland, OH, NASA-Technical Memorandum-105867.
15.
Hall
,
M. L.
,
Rider
,
W. J.
, and
Cappiello
,
M. W.
,
1992
, “
Thermohydraulic Modeling of Nuclear Thermal Rockets: The Klaxon Code
,”
Proceedings of Nuclear Technologies for Space Exploration
,
American Nuclear Society
,
Jackson Hole, WY
.
16.
Schmidt
,
E.
,
Lazareth
,
O.
, and
Ludewig
,
H.
,
1993
, “
Kinetic—A System Code For Analyzing Nuclear Thermal Propulsion Rocket Engine Transients
,”
Proceedings of 10th Symposium on Space Nuclear Power and Propulsion
,
AIP
,
Melville, NY
, Vol. 
271
, pp. 
1303
1308
17.
Schnitzler
,
B. G.
, and
Borowski
,
S. K
,
2007
, “
Neutronic Models and Analysis of small Nuclear Rocket Engine (SNRE)
,”
Proceedings of the 43th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
,
AIAA
,
Reston, VA
, Paper No. 2007-5618.
18.
Stewart
,
M. E. M.
, and
Schnitzler
,
B. G.
,
2007
, “
Thermal Hydraulic and Structural Analysis of a Small Nuclear Rocket (SNRE) Core
,”
Proceedings of the 43th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
,
AIAA
,
Reston, VA
, Paper No. 2007-5619.
19.
Stewart
,
M. E. M.
, and
Schnitzler
,
B. G.
,
2008
, “
Thermal Hydraulic and Structural Analysis of Nuclear Thermal Propulsion Reactor Core Components
,”
Proceedings of the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
,
AIAA
,
Reston, VA
, Paper No. 2008-4950.
20.
Cheng
,
G.
,
Ito
,
Y.
,
Ross
,
D.
, and
Wang
,
Y.-S.
,
2007
, “
Numerical Simulations of a Single Flow Element in a Nuclear Thermal Thrust Chamber
,”
Proceedings of 39th AIAA Thermophysics Conference
,
AIAA
,
Reston, VA
, Paper No. 2007-4143.
21.
Wang
,
T.-S.
,
Canabal
,
F.
,
Chen
,
Y.-S.
, and
Cheng
,
G.
,
2010
, “
Multiphysics Computational Analysis of a Solid-Core Nuclear Thermal Engine Thrust Chamber
,”
AIAA J. Propul. Power
,
26
(
3
), pp. 
407
414
.10.2514/1.47759
22.
Webb
,
J. A.
,
Gross
,
B. J.
, and
Taitano
,
W. T.
,
2011
, “
Conceptual Design of a CERMET NTR Fission Core Using Multiphysics Modelling Techniques
,”
Proceedings of the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
,
AIAA
,
Reston, VA
, Paper No. 2011-5947.
23.
Webb
,
J. A.
,
Gross
,
B. J.
, and
Taitano
,
W. T.
,
2011
, “
A Combined Neutronic-Thermal Hydraulic Model of a CERMET NTR Reactor
,”
Proceedings of Numerical and Emerging Technologies for Space 2011, NETS-2011
,
AIAA
,
Reston, VA
, Paper No. 3276.
24.
Belair
,
M. L.
,
Sarmiento
,
C. J.
, and
Lavelle
,
T. M.
,
2013
, “
Nuclear Thermal Rocket Simulation in NPSS
,”
Proceedings of the 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
,
AIAA
,
Reston, VA
, Paper No. 2013-4001.
25.
Zhao
,
X.
,
Montgomery
,
T.
, and
Zhang
,
S.
,
2013
, “
Computational Study on a Single Flow Element in a Nuclear Thermal Rocket
,”
Proceedings of the 21st International Conference on Nuclear Engineering
,
ASME
,
New York
, Vol.
3
, Paper No. ICONE21-15683.
26.
Apel
,
B.
,
2012
, “
Multiphysics Design and Simulation of a Tungsten-CERMET Nuclear Thermal Rocket
,” M.Sc. thesis,
Nuclear Engineering, Texas A&M University
.
27.
Akyuzlu
,
K. M.
,
2007
, “
Modeling of Instabilities Due to Coupling of Acoustic and Hydrodynamic Oscillations in Hybrid Rocket Motors
,”
Proceedings of the 43rd AIAA/ASME Joint Propulsion Conference and Exhibit
,
AIAA
,
Reston, VA
, Paper No. 2007-5367.
28.
Akyuzlu
,
K. M.
, and
Coote
,
D.
,
2014
, “
Numerical Simulations of Thermal Hydrodynamic Transients in the Cooling Channels of a Nuclear Thermal Propulsion Engine
,”
Proceedings of the 49th AIAA Propulsion and Energy Conference
,
AIAA
,
Reston, VA
, Paper No. 2014-3725.
29.
Akyuzlu
,
K. M.
,
2012
, “
Analytical Investigation of Fluid-Structure Interactions in a Nuclear Thermal Rocket
,”
University of New Orleans—NASA SSC
, Contract No. NNS10AA92B, Final Report.
30.
White
,
F. M.
,
2002
,
Fluid Mechanics
,
5th ed.
,
McGraw-Hill
,
New York
.
31.
NIST Reference Fluid Thermodynamic and Transport Properties—REFPROP
,
2007
,
National Institute of Standards and technology, US Department of Commerce
, Boulder, CO.
32.
McCarty
,
R.
,
1975
, “
Hydrogen Technological Survey: Thermophysical Properties
,”
National Aeronautics and Space Administration
, SP-3089.
33.
Singh
,
S.
,
2013
, “
A Numerical Study of High Temperature and High Velocity Gaseous Hydrogen Flow in a Cooling Channel
,” M.Sc. thesis,
Department of Mechanical Engineering, University of New Orleans
.
34.
Aerojet Nuclear Systems Company
,
1970
,
Material Properties Data Book.
,
Aero-Jet General
,
Sacramento, CA
.
You do not currently have access to this content.