A joint experimental and numerical campaign is conducted to provide validation dataset of high-fidelity fluid–structure interaction (FSI) models of nuclear fuel assemblies during seismic loading. A refractive index-matched (RIM) flow loop is operated on a six-degree-of-freedom shake table and instrumented with nonintrusive optical diagnostics. The test section can house up to three full-height fuel assemblies. To guarantee reproducible and controlled initial conditions, special care is given to the test section inlet plenum; in particular, it is designed to minimize secondary pulsatile flow that may arise due to ground acceleration. A single transparent surrogate 6×6 fuel subassembly is used near prototypical Reynolds number, Re=105 based on hydraulic diameter. To preserve dynamic similarity of the model with prototype, the main dimensionless parameters are matched and custom spacer grids are designed. Special instruments are developed to characterize fluid and structure response and to operate in this challenging shaking environment. In parallel to the earlier experiments, we also conducted fully coupled direct numerical simulations, where the equations for the fluid and the structure are simultaneously advanced in time using a partitioned scheme. To deal with the highly complex geometrical configuration, which also involves large displacements and deformations, we utilize a second-order accurate, immersed boundary (IB) formulation, where the geometry is immersed in a block-structured grid with adaptive mesh refinement (AMR). To explore a wide parametric range, we will consider several subsets of the experimental configuration. A typical computation involves 60,000 cores, on leadership high-performance computing facilities (i.e., IBM Blue-Gene Q–MIRA).

References

1.
Viallet
,
E.
,
Bolsee
,
G.
,
Ladouceur
,
B.
,
Goubin
,
T.
, and
Rigaudeau
,
J.
,
2003
, “
Validation of PWR Core Seismic Models With Shaking Table Tests on Interacting Scale 1 Fuel Assemblies
,”
Transactions of the 17th International Conference on Structural Mechanics in Reactor Technology (SMIRT 17)
,
International Atomic Energy Agency
,
Vienna, Austria
.
2.
Ricciardi
,
G.
, and
Boccaccio
,
E.
,
2014
, “
Measurements of Fluid Fluctuations Around an Oscillating Nuclear Fuel Assembly
,”
J. Fluids Struct.
,
48
(
1
), pp. 
332
346
.10.1016/j.jfluidstructs.2014.03.016
3.
Lu
,
R. Y.
, and
Seel
,
D. D.
,
2006
, “
PWR Fuel Assembly Damping Characteristics
,”
Proceedings of the 14th International Conference on Nuclear Engineering
,
American Society of Mechanical Engineers
,
New York
.
4.
Kang
,
H. S.
,
Song
,
K. N.
,
Kim
,
H. K.
, and
Yoon
,
K. H.
,
2003
, “
Axial-Flow-Induced Vibration for a Rod Supported by Translational Springs at Both Ends
,”
Nucl. Eng. Des.
,
220
(
1
), pp. 
83
90
.10.1016/S0029-5493(02)00291-1
5.
Bell
,
J. H.
, and
Mehta
,
R. D.
,
1991
, “
Contraction Design for Small Low-Speed Wind Tunnels
,”
National Aeronautics and Space Administration
,
Washington, DC
, NASA CR-182747.
6.
Zuber
,
N.
,
1991
, “
An Integrated Structure and Scaling Methodology for Severe Accident Technical Issue Resolution, Appendix D
,”
U.S. Nuclear Regulatory Commission
, NUREG/CR-5809.
7.
Paidoussis
,
M. P.
,
1981
, “
Fluidelastic Vibration of Cylinder Arrays in Axial and Cross Flow: State of the Art
,”
J. Sound Vib.
,
76
(
3
), pp. 
31
60
.
8.
Wiederseiner
,
S.
,
Andreini
,
N.
,
Epely-Chauvin
,
G.
, and
Ancey
,
C.
,
2011
, “
Refractive-Index and Density Matching in Concentrated Particle Suspensions: A Review
,”
Exp. Fluids
,
50
(
5
), pp. 
1183
1206
.10.1007/s00348-010-0996-8
9.
Rubin
,
A.
,
Schoedel
,
A.
, and
Avramova
,
M.
,
2010
, “
OECD/NRC Benchmark Based on NUPEC PWR Subchannel and Bundle Tests (PSBT)
,” NEA/NSC/DOC(2010)1, US NRC/OECD NEA.
10.
Kang
,
H. S.
,
Song
,
K. N.
,
Kim
,
H. K.
,
Yoon
,
K. H.
, and
Jung
,
Y. H.
,
2001
, “
Verification Test and Model Updating for a Nuclear Fuel Rod With Its Supporting Structure
,”
J. Korean Nucl. Soc.
,
33
(
1
), pp. 
73
82
.
11.
Haam
,
S. J.
,
Brodkey
,
R. S.
,
Fort
,
I.
,
Klabock
,
L.
,
Placnik
,
M.
, and
Vanecek
,
V.
,
2000
, “
Laser Doppler Anemometry Measurements in an Index of Refraction Matched Column in the Presence of Dispersed Beads
,”
Int. J. Multiphase Flow
,
26
(
9
), pp. 
1401
1418
.10.1016/S0301-9322(99)00094-4
12.
Dominguez-Ontiveros
,
E. E.
, and
Hassan
,
Y. A.
,
2009
, “
Non-Intrusive Experimental Investigation of Flow Behavior Inside a 5x5 Rod Bundle With Spacer Grids Using PIV and MIR
,”
Nucl. Eng. Des.
,
239
(
5
), pp. 
888
898
.10.1016/j.nucengdes.2009.01.009
13.
Bardet
,
P. M.
,
Fu
,
C. D.
,
Sickel
,
C. E.
, and
Weichselbaum
,
N. A.
,
2014
, “
Refractive Index and Solubility Control of Para-Cymene Solutions
,”
2014 International Symposium on Applications of Laser Techniques to Fluid Mechanics
,
Instituto Superior Tecnico
,
Lisbon, Portugal
.
14.
Weichselbaum
,
N. A.
,
Clement
,
S.
,
Wang
,
S.
,
André
,
M. A.
,
Rahimi-Abkenar
,
M.
,
Manzari
,
M. T.
, and
Bardet
,
P. M.
,
2014
, “
Single Camera PIV/Shadowgraphy and Laser Delivery on Earthquake Shake Table for Fluid-Structure Interaction Measurements
,”
2014 International Symposium on Applications of Laser Techniques to Fluid Mechanics
,
Instituto Superior Tecnico
,
Lisbon, Portugal
.
15.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
1981
,
Fundamentals of Heat and Mass Transfer
, 2nd ed.,
Wiley
,
New York
.
16.
Chorin
,
A. J.
,
1968
, “
Numerical Solution of the Navier-Stokes Equations
,”
Math. Comput.
,
22
(
104
), pp. 
745
762
.10.1090/S0025-5718-1968-0242392-2
17.
Kim
,
J.
, and
Moin
,
P.
,
1985
, “
Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations
,”
J. Comput. Phys.
,
59
(
2
), pp. 
308
323
.10.1016/0021-9991(85)90148-2
18.
Van Kan
,
J.
,
1986
, “
A Second-Order Accurate Pressure-Correction Scheme for Viscous Incompressible Flow
,”
SIAM J. Sci. Stat. Comput.
,
7
(
3
), pp. 
870
891
.10.1137/0907059
19.
Flash Code
,
Flash Center for Computational Science, University of Chicago
. http://flash.uchicago.edu/site.
20.
De Zeeuw
,
D.
, and
Powell
,
K. G.
,
1993
, “
An Adaptively Refined Cartesian Mesh Solver for the Euler Equations
,”
J. Comput. Phys.
,
104
(
1
), pp. 
56
68
.10.1006/jcph.1993.1007
21.
MacNeice
,
P.
,
Olson
,
K. M.
,
Mobarry
,
C.
,
deFainchtein
,
R.
, and
Packer
,
C.
,
2000
, “
Paramesh: A Parallel Adaptive Mesh Refinement Community Toolkit
,”
Comput. Phys. Commun.
,
126
(
3
), pp. 
330
354
.10.1016/S0010-4655(99)00501-9
22.
Daley
,
C.
,
Vanella
,
M.
,
Dubey
,
A.
,
Weide
,
K.
, and
Balaras
,
E.
,
2012
, “
Optimization of Elliptic Based Multigrid Solver for Large Scale Simulations in the FLASH Code
,”
Concurrency Comput. Pract. Exp.
,
24
(
18
), pp. 
2346
2361
.10.1002/cpe.v24.18
23.
Vanella
,
M.
,
Ez Eldin
,
H.
,
Mohapatra
,
P.
,
Daley
,
C.
,
Dubey
,
A.
, and
Balaras
,
E.
,
2013
, “
A Computational Scheme for Simulation of Dense Suspensions of Arbitrarily Shaped Rigid Particles
,”
66th Annual Meeting of the APS Division of Fluid Dynamics (Bulletin of the American Physical Society)
, Vol.
58
,
American Physical Society
,
College Park, MD
.
24.
Uhlmann
,
M.
,
2005
, “
An Immersed Boundary Method With Direct Forcing for the Simulation of Particulate Flows
,”
J. Comput. Phys.
,
209
(
2
), pp. 
448
476
.10.1016/j.jcp.2005.03.017
25.
Vanella
,
M.
, and
Balaras
,
E.
,
2009
, “
A Moving-Least-Squares Reconstruction for Embedded-Boundary Formulations
,”
J. Comput. Phys.
,
228
(
18
), pp. 
6617
6628
.10.1016/j.jcp.2009.06.003
26.
Fadlun
,
E. A.
,
Verzicco
,
R.
,
Orlandi
,
R.
, and
Mohd-Yusof
,
J.
,
2000
, “
Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations
,”
J. Comput. Phys.
,
161
(
1
), pp. 
35
60
.10.1006/jcph.2000.6484
27.
Vanella
,
M.
,
Posa
,
A.
, and
Balaras
,
E.
,
2014
, “
Adaptive Mesh Refinement for Immersed Boundary Methods
,”
J. Fluids Eng.
,
136
(
4
), p. 
040901
.10.1115/1.4026415
28.
Modarres-Sadeghi
,
Y.
,
Paidoussis
,
M. P.
,
Semler
,
C.
, and
Grinevich
,
E.
,
2008
, “
Experiments on Vertical Slender Flexible Cylinders Clamped at Both Ends and Subjected to Axial Flow
,”
Philos. Trans. R. Soc. A
,
366
(
1
), pp. 
1275
1296
.10.1098/rsta.2007.2131
29.
Yang
,
J.
,
Preidikman
,
S.
, and
Balaras
,
E.
,
2008
, “
A Strongly Coupled, Embedded Boundary Method for Fluid-Structure Interactions of Elastically Mounted Rigid Bodies
,”
J. Fluids Struct.
,
24
(
2
), pp. 
167
182
.10.1016/j.jfluidstructs.2007.08.002
30.
Vanella
,
M.
,
Rabenold
,
P.
, and
Balaras
,
E.
,
2010
, “
A Direct-Forcing Embedded Boundary Method With Adaptive Mesh Refinement for Fluid-Structure Interaction Problems
,”
J. Comput. Phys.
,
229
(
18
), pp. 
6427
6449
.10.1016/j.jcp.2010.05.003
31.
Mohapatra
,
P.
,
Dubey
,
A.
,
Daley
,
C.
,
Vanella
,
M.
, and
Balaras
,
E.
,
2013
, “
Parallel Algorithms for Using Lagrangian Markers in Immersed Boundary Method With Adaptive Mesh Refinement in FLASH
,”
Proceedings of SBAC-PAD 2013
,
Institute of Electrical and Electronics Engineers
,
Piscataway, NJ
, pp. 
214
220
.10.1109/SBAC-PAD.2013.27
You do not currently have access to this content.