Monolithic plate-type fuels comprise a high-density, low-enrichment, U10Mo fuel foil encapsulated in a cladding material. This concept generates several fabrication challenges, including flatness, centering, or thickness variation. There are concerns whether these parameters have implications on overall performance. To investigate these inquiries, the effects of the foil flatness were studied. For this, a representative plate was simulated for an ideal case. The simulations were repeated for additional cases with various foil curvatures to evaluate the effects on the irradiation performance. The results revealed that the stresses and strains induced by fabrication process are not affected by the flatness of the foil. Furthermore, fabrication stresses in the foil are relieved relatively fast in the reactor. The effects of the foil flatness on peak irradiation stress-strains are minimal. There is a slight increase in temperature for the case with maximum curvature. The major impact is on the displacement characteristics. While the case with a flat foil produces a symmetrical swelling, if the foil is curved, more swelling occurs on the thin-cladding side and the plate bows during irradiation.

References

References
1.
Snelgrove
,
J. L.
,
Hofman
,
G. L.
, and
Meyer
,
M. K.
,
1997
, “
Development of Very High Density Low-Enriched Uranium Fuels
,”
J. Nucl. Eng. Des.
,
178
(
1
), pp.
119
126
.10.1016/S0029-5493(97)00217-3
2.
Meyer
,
M. K.
,
Hofman
,
G. L.
,
Hayes
,
S. L.
, and
Clark
,
C. R.
,
2002
, “
Low Temperature Irradiation Behavior of U-Mo Alloy Dispersion Fuels
,”
J. Nucl. Mater.
,
304
(
2–3
), pp.
221
236
.10.1016/S0022-3115(02)00850-4
3.
Park
,
J. M.
,
Kim
,
K. H.
,
Kim
,
C. K.
,
Meyer
,
M. K.
,
Hofman
,
G. L.
, and
Strain
,
R. V.
,
2001
, “
The Irradiation Behavior of Atomized U-Mo Alloy Fuels at High Temperature
,”
J. Met. Mater. Int.
,
7
(
2
), pp.
151
157
.10.1007/BF03026953
4.
Moore
,
G. A.
, and
Marshall
,
M. C.
,
2010
, “
INL/EXT 10-17774: Co-Rolled U10Mo/Zirconium Barrier Layer Monolithic Fuel Foil Fabrication Process
,”
Idaho National Laboratory
,
Idaho Falls, ID
.
5.
Jue
,
J. F.
,
Blair
,
H. P.
,
Curtis
,
R. C.
,
Glenn
,
A. M.
, and
Dennis
,
D. K.
,
2010
, “
Fabrication of Monolithic RERTR Fuels by Hot Isostatic Pressing
,”
J. Nucl. Technol.
,
172
(
2
), pp.
204
210
.
6.
Lillo
,
M. A.
, and
Chang
,
G. S.
,
2011
, “
RERTR-12-3 Projected Physics Analysis Results for Use in Thermal and Oxide Growth Evaluations
,”
Idaho National Laboratory
,
Idaho Falls, ID
, .
7.
Lillo
,
M. A.
,
2012
, “
MCNP-Calculated Fission Power Gradients for RERTR-12 Mini-Plates Irradiated in ATR
,”
Idaho National Laboratory
,
Idaho Falls, ID
, .
8.
Ozaltun
,
H.
, and
Medvedev
,
P.
,
2014
, “
Effects of the Foil Flatness on the Stress-Strain Characteristics of U10Mo Alloy Based Monolithic Mini-Plates
,”
Proceedings of the ASME 2014 International Mechanical Engineering Congress & Exposition
,
Montreal, Canada
,
American Society of Mechanical Engineers
,
New York
, Vol.
6B
: Energy, pp. V06BT07A021 (15 pages).
9.
Ozaltun
,
H.
,
Shen
,
H.
, and
Medvedev
,
P.
,
2013
, “
Computational Evaluation for the Mechanical Behavior of U10Mo Fuel Mini Plates Subject to Thermal Cycling
,”
Nucl. Eng. Des.
,
254
(
1
), pp.
165
178
.10.1016/j.nucengdes.2012.09.008
10.
Ozaltun
,
H.
,
Shen
,
H.
, and
Medvedev
,
P.
,
2011
, “
Assessment of Residual Stresses on U10Mo Alloy Based Monolithic Mini-Plates During Hot Isostatic Pressing
,”
J. Nucl. Mater.
,
419
(
1–3
), pp.
76
84
.10.1016/j.jnucmat.2011.08.029
11.
Abaqus/Standard Subroutines
,
2012
,
User Subroutines Reference Manual V6.12. Section 1.1
,
ABAQUS Inc.
,
Providence, RI
.
12.
Beghi
,
G.
,
1968
, “
Gamma Phase Uranium-Molybdenum Fuel Alloys, Report Number EUR-4053e
,”
European Atomic Energy Community—EURATOM
, Brussels, Belgium.
13.
Kim
,
Y. S.
, and
Hofman
,
G. L.
,
2011
, “
Fission Product Induced Swelling of U-Mo Alloy Fuel
,”
J. Nucl. Mater.
,
419
(
1–3
), pp.
291
301
.10.1016/j.jnucmat.2011.08.018
14.
Kim
,
Y. S.
,
Hofman
,
G. L.
,
Cheon
,
J. S.
,
Robinson
,
A. B.
, and
Wachs
,
D. M.
,
2013
, “
Fission Induced Swelling and Creep of U-Mo Alloy Fuel
,”
J. Nucl. Mater.
,
437
(
1–3
), pp.
37
46
.10.1016/j.jnucmat.2013.01.346
15.
Hayes
,
S. L.
,
Hofman
,
G. L.
,
Meyer
,
M. K.
, and
Rest
,
J.
,
2002
, “
Modeling of High Density of U-Mo Dispersion Fuel Plate Performance
,”
24th International Meeting on Reduced Enrichment for Research and Test Reactors (RERTR)
,
San Carlos de Bariloche, Argentina
.
16.
Polkinghorne
,
S. T.
, and
Lacy
,
J. M.
,
1991
, “
Thermo-Physical and Mechanical Properties of ATR Core Materials
,”
EG&G Idaho Inc.
,
Idaho Falls, ID
, .
17.
Kaufman
,
J. G.
,
2006
,
Properties of Aluminum Alloys: Tensile, Creep and Fatigue Data at High and Low Temperatures
,
3rd ed.
,
ASM International
,
Materials Park, OH
, pp.
163
164
.
18.
Farrell
,
K.
, and
King
,
T.
,
1979
, “Tensile Properties of Neutron-Irradiated 6061 Aluminum Alloy in Annealed and Precipitation-Hardened Conditions,”
Effects of Radiation on Structural Materials, ASTM STP 683
,
American Society for Testing and Materials
,
West Conshohocken, PA
, pp.
440
449
.
19.
Farrell
,
K.
,
1996
, “
Assessment of Aluminum Structural Materials for Service Within the ANS Reflector Vessel,
,”
Oak Ridge National Laboratory
,
Oak Ridge, TN
, Report Number ORNL/TM-13049.
20.
Webster
,
R.
,
1990
,
Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
(ASM Handbook, Vol.
2
),
American Society for Metals International
,
Materials Park, OH
, pp.
661
666
.978-0-87170-378-1
21.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2001
,
Introduction to Heat Transfer
,
4th ed.
,
New York
,
Wiley
, pp.
412
417
.0471386499
22.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2010
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties—REFPROP, Version 9.0, NIST, Standard Reference Data Program
,”
National Institute of Standards and Technology
,
Gaithersburg, MD
.
You do not currently have access to this content.