This paper describes a sequence of residual stress measurements made to determine a two-dimensional map of biaxial residual stress in a stainless steel weld. A long stainless steel (316L) plate with an eight-pass groove weld (308L filler) was used. The biaxial stress measurements follow a recently developed approach, comprising a combination of contour method and slitting measurements, with a computation to determine the effects of out-of-plane stress on a thin slice. The measured longitudinal stress is highly tensile in the weld- and heat-affected zone, with a maximum around 450 MPa, and compressive stress toward the transverse edges around −250 MPa. The total transverse stress has a banded profile in the weld with highly tensile stress at the bottom of the plate (y = 0) of 400 MPa, rapidly changing to compressive stress (at y = 5 mm) of −200 MPa, then tensile stress at the weld root (y = 17 mm) and in the weld around 200 MPa, followed by compressive stress at the top of the weld at around −150 MPa. The results of the biaxial map compare well with the results of neutron diffraction measurements and output from a computational weld simulation.

References

References
1.
EPRI
,
2004
, “
Material Reliability Program Crack Growth Rates for Evaluating Primary Water Stress Corrosion Cracking (PWSCC) of Alloy 82, 182, and 132 Welds
,”
Electric Power Research Institute
, Palo Alto, CA, MRP-115NP.
2.
Brust
,
F. W.
, and
Scott
,
P. M.
,
2007
, “
Weld Residual Stresses and Primary Water Stress Corrosion Cracking in Bimetal Nuclear Pipe Welds
,”
ASME 2007 Pressure Vessels and Piping Conference
,
American Society of Mechanical Engineers
,
New York, NY
, PVP2007-26297.
3.
Song
,
T.-K.
,
Bae
,
H.-R.
,
Kim
,
Y.-J.
, and
Lee
,
K.-S.
,
2010
, “
Numerical Investigation on Welding Residual Stresses in a PWR Pressurizer Safety/Relief Nozzle
,”
Fatigue Fract. Eng. Mater. Struct.
,
33
(
11
), pp.
689
702
.10.1111/ffe.2010.33.issue-11
4.
James
,
M. N.
,
Hughes
,
D. J.
,
Chen
,
Z.
,
Lombard
,
H.
,
Hattingh
,
D. G.
,
Asquith
,
D.
,
Yates
,
J. R.
, and
Webster
,
P. J.
,
2007
, “
Residual Stresses and Fatigue Performance
,”
Eng. Fail. Anal.
,
14
(
2
), pp.
384
395
.10.1016/j.engfailanal.2006.02.011
5.
Kerr
,
M.
,
Prime
,
M. B.
,
Swenson
,
H.
,
Buechler
,
M. A.
,
Steinzig
,
M
,
Clausen
,
B.
, and
Sisneros
,
T.
,
2013
, “
Residual Stress Characterization in a Dissimilar Metal Weld Nuclear Reactor Piping System Mock Up
,”
J. Pressure Vessel Technol.
,
135
(
4
), p.
041205
.10.1115/1.4024446
6.
ASME
,
2013
,
Boiler and Pressure Vessel Code
,
American Society of Mechanical Engineers
,
New York
.
7.
British Energy Generation Ltd.
,
2004
, “
Procedure R6 Revision 4: Assessment of the Integrity of Structures Containing Defects
,”
British Energy Generation Ltd.
,
Gloucester, UK
.
8.
Edwards
,
L.
,
Smith
,
M. C.
,
Turski
,
M.
,
Fitzpatrick
,
M. E.
, and
Bouchard
,
P. J.
,
2008
, “
Advances in Residual Stress Modeling and Measurement for the Structural Integrity Assessment of Welded Thermal Power Plant
,”
Adv. Mater. Res.
,
41
(
1
), pp.
391
400
.10.4028/www.scientific.net/AMR.41-42.391
9.
EPRI
,
2011
, “
Materials Reliability Program: Finite-Element Model Validation for Dissimilar Metal Butt-Welds
,”
Electric Power Research Institute
, Palo Alto, CA, .
10.
Rathbun
,
H. J.
,
Fredette
,
L. F.
,
Scott
,
P. M.
,
Csontos
,
A. A.
, and
Rudland
,
D. L.
,
2011
, “
NRC Welding Residual Stress Validation Program International Round Robin Program and Findings
,”
2011 ASME Pressure Vessels & Piping Division Conference
,
Baltimore, MD
,
American Society of Mechanical Engineers
,
New York, NY
, PVP2011-57642.
11.
Truman
,
C.
, and
Smith
,
M.
,
2009
, “
The NeT Residual Stress Measurement and Modelling Round Robin on a Single Weld Bead-on-Plate Specimen
,”
Int. J. Press. Vessels Pip.
,
86
(
1
), pp.
1
2
.10.1016/j.ijpvp.2008.11.018
12.
Ohms
,
C.
,
Wimpory
,
R. C.
,
Katsareas
,
D. E.
, and
Youtsos
,
A. G.
,
2009
, “
NET TG1: Residual Stress Assessment by Neutron Diffraction and Finite Element Modeling on a Single Bead Weld on a Steel Plate
,”
Int. J. Press. Vessels Pip.
,
86
(
1
), pp.
63
72
.10.1016/j.ijpvp.2008.11.009
13.
Smith
,
M. C.
, and
Smith
,
A. C.
,
2009
, “
NeT Bead-on-Plate Round Robin: Comparison of Residual Stress Predictions and Measurements
,”
Int. J. Press. Vessels Pip.
,
86
(
1
), pp.
79
95
.10.1016/j.ijpvp.2008.11.017
14.
Bouchard
,
P. J.
,
2009
, “
The NeT Bead-on-Plate Benchmark for Weld Residual Stress Simulation
,”
Int. J. Press. Vessels Pip.
,
86
(
1
), pp.
31
42
.10.1016/j.ijpvp.2008.11.019
15.
Hutchings
,
M. T.
,
Withers
,
P. J.
,
Holden
,
T. M.
, and
Lorentzen
,
T.
,
2005
,
Introduction to the Characterization of Residual Stress by Neutron Diffraction
,
CRC Press,
Boca Raton, FL
.
16.
Woo
,
W.
,
Choo
,
H.
,
Prime
,
M.
,
Feng
,
Z.
, and
Clausen
,
B.
,
2008
, “
Microstructure, Texture and Residual Stress in a Friction-Stir-Processed AZ31B Magnesium Alloy
,”
Acta Mater.
,
56
(
8
), pp.
1701
1711
.10.1016/j.actamat.2007.12.020
17.
Smith
,
D. J.
,
2013
,
Practical Residual Stress Measurement Methods
, Chap. 3,
John Wiley & Sons
,
West Sussex, UK
.
18.
Masubuchi
,
K.
,
1980
,
Analysis of Welded Structures: Residual Stresses, Distortion, and Their Consequences
, Chap. 4,
Pergamon Press
,
New York
.
19.
Gunnert
,
R.
,
1961
,
Proceedings of the Special Symposium on the Behavior of Welded Structures
,
Engineering Experiment Station, University of Illinois at Urbana-Champaign
,
Champaign, IL
.
20.
Rosenthal
,
D.
, and
Norton
,
J.
,
1945
, “
A Method of Measuring Triaxial Residual Stress in Plates
,”
Weld. J.
,
24
(
5
), pp.
295
307
.
21.
Hill
,
M. R.
, and
Nelson
,
D. V.
,
1996
, “
Determining Residual Stress Through the Thickness of a Welded Plate
,”
ASME Publications PVP
,
327
(
1
), pp.
29
36
.
22.
Olson
,
M. D.
,
Hill
,
M. R.
,
Willis
,
E.
,
Peterson
,
A. G.
,
Patel
,
V. I.
, and
Muránsky
,
O.
,
2014
, “
Assessment of Weld Residual Stress Measurement Precision: Mock-Up Design and Results for the Contour Method
,”
J. Nucl. Eng. Radiat. Sci
, in press.10.1115/1.4029413
23.
Olson
,
M. D.
,
Wong
,
W.
, and
Hill
,
M. R.
,
2012
, “
Simulation of Triaxial Residual Stress Mapping for a Hollow Cylinder
,”
ASME 2012 Pressure Vessels & Piping Conference
,
Toronto, Ontario, Canada
,
American Society of Mechanical Engineers
,
New York, NY
, PVP2012-78885.
24.
Olson
,
M. D.
, and
Hill
,
M. R.
,
2014
, “
Biaxial Residual Stress Mapping Validation
,”
Exp. Mech.
, in review.
25.
Prime
,
M. B.
,
2001
, “
Cross-Sectional Mapping of Residual Stresses by Measuring the Surface Contour after a Cut
,”
J. Eng. Mater. Technol.
,
123
(
2
), pp.
162
168
.10.1115/1.1345526
26.
2010
, Abaqus/Standard, Version 6.10, Providence, RI.
27.
Hill
,
M. R.
,
2013
,
Practical Residual Stress Measurement Methods
, Chap. 4,
John Wiley & Sons
,
West Sussex, UK
.
28.
Schajer
,
G. S.
, and
Prime
,
M. B.
,
2006
, “
Use of Inverse Solutions for Residual Stress Measurement
,”
J. Eng. Mater. Technol.
,
128
(
2
), pp.
375
382
.
29.
Aydıner
,
C. C.
, and
Prime
,
M. B.
,
2013
, “
Three-Dimensional Constraint Effects on the Slitting Method for Measuring Residual Stress
,”
J. Eng. Mater. Technol.
,
135
(
3
), p.
031006
.10.1115/1.4023849
30.
Olson
,
M. D.
, and
Hill
,
M. R.
,
2014
, “
Residual Stress Mapping With Slitting
,”
Exp. Mech.
, in preparation.
31.
Wong
,
W.
, and
Hill
,
M. R.
,
2013
, “
Superposition and Destructive Residual Stress Measurements
,”
Exp. Mech.
,
53
(
3
), pp.
339
344
.10.1007/s11340-012-9636-y
32.
Olson
,
M. D.
,
DeWald
,
A. T.
,
Hill
,
M. R.
, and
Prime
,
M. B.
,
2014
, “
Contour Method Uncertainty Estimation
,”
Exp. Mech.
, in press.
33.
Prime
,
M. B.
, and
Hill
,
M. R.
,
2006
, “
Uncertainty, Model Error, and Order Selection for Series-Expanded, Residual-Stress Inverse Solutions
,”
J. Eng. Mater. Technol.
,
128
(
2
), pp.
175
185
.10.1115/1.2172278
34.
ISO
, “
Non-Destructive Testing—Standard Test Method for Determining Residual Stresses by Neutron Diffraction
,”
International Organization for Standardization
, Geneva, Switzerland, ISO/TS 21432.
35.
Bourke
,
M. A. M.
,
Dunand
,
D. C.
, and
Ustundag
,
E.
,
2002
, “
SMARTS—A Spectrometer for Strain Measurement in Engineering Materials
,”
Appl. Phys. A: Mater. Sci. Process.
,
74
(
1
), pp.
1707
1709
.10.1007/s003390201747
36.
Larson
,
A. C.
, and
Von Dreele
,
R. B.
,
2004
, “
General Structural Analysis System (GSAS)
,”
Los Alamos National Laboratory Report LAUR 86-748
.
37.
Muránsky
,
O.
,
Smith
,
M.
,
Bendeich
,
P.
,
Holden
,
T.
,
Luzin
,
V.
,
Martins
,
R.
, and
Edwards
,
L.
,
2012
, “
Comprehensive Numerical Analysis of a Three-Pass Bead-in-Slot Weld and its Critical Validation Using Neutron and Synchrotron Diffraction Residual Stress Measurements
,”
Int. J. Solids Struct.
,
49
(
9
), pp.
1045
1062
.10.1016/j.ijsolstr.2011.07.006
38.
2010
, FeatPlus, FEAT-Weld Modeling Tools, Version 2.0, Bristol, UK.
39.
Patel
,
V. I.
,
Muránsky
,
O.
,
Hamelin
,
C. J.
,
Olson
,
M. D.
,
Hill
,
M. R.
, and
Edwards
,
L.
,
2013
, “
A Validated Numerical Model for Residual Stress Predictions in an Eight-Pass-Welded Stainless Steel Plate
,”
Mater. Sci. Forum
,
777
(
1
), pp.
46
51
.10.4028/www.scientific.net/MSF.777.46
40.
Patel
,
V. I.
,
Muránsky
,
O.
,
Hamelin
,
C. J.
,
Olson
,
M. D.
,
Hill
,
M. R.
, and
Edwards
,
L.
,
2014
, “
Finite Element Modelling of Welded Austenitic Stainless Steel Plate With 8-Passes
,”
ASME 2014 Pressure Vessels & Piping Division Conference
,
Anaheim, CA
, PVP2014-28209.
41.
Lee
,
M. J.
, and
Hill
,
M. R.
,
2007
, “
Intralaboratory Repeatability of Residual Stress Determined by the Slitting Method
,”
Exp. Mech.
,
47
(
6
), pp.
745
752
.10.1007/s11340-007-9085-1
42.
Zhang
,
J.
, and
Dong
,
P.
,
2000
, “
Residual Stresses in Welded Moment Frames and Implications for Structural Performance
,”
J. Struct. Eng.
,
126
(
3
), pp.
306
315
.10.1061/(ASCE)0733-9445(2000)126:3(306)
43.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
2009
,
Experimentation, Validation, and Uncertainty Analysis for Engineers
, Chap. 2,
John Wiley & Sons
,
Hoboken, NJ
.
44.
Hill
,
M. R.
,
Olson
,
M. D.
, and
DeWald
,
A. T.
,
2014
, “
Biaxial Residual Stress Mapping for a Dissimilar Metal Welded Nozzle
,”
ASME 2014 Pressure Vessels & Piping Division Conference
,
Anaheim, CA
, PVP2014-28328.
You do not currently have access to this content.