Recent experimental work has shown residual stress measurements in welded material to be difficult. To better assess the precision of residual stress measurement techniques, a measurement article was designed to allow repeated measurements of a nominally identical stress field. The measurement article is a long 316L stainless steel plate containing a machine-controlled eight-pass slot weld. Measurements of weld direction residual stress made with the contour method found high tensile stress in the weld and heat-affected zone, with a maximum near 450 MPa and compressive stress away from the weld, a typical residual stress profile for constrained welds. The repeatability standard deviation of repeated contour method residual stress measurements was found to be less than 20 MPa at most spatial locations away from the boundaries of the plate. The repeatability data in the weld are consistent with those from a previous repeatability experiment using the contour method in quenched aluminum bars. A finite-element simulation and neutron diffraction measurements were performed for the same weld and provided results consistent with the contour method measurements. Much of the material used in the work remains available for use in assessing other residual stress measurement techniques, or for an interlaboratory reproducibility study of the contour method.

References

References
1.
Bush
,
S. H.
,
1992
, “
Failure Mechanisms in Nuclear Power Plant Piping Systems
,”
J. Pressure Vessel Technol.
,
114
(
4
), pp.
389
395
.10.1115/1.2929244
2.
Crooker
,
P.
, and
Csontos
,
A.
,
2010
, “
Cooperative Dissimilar Metal Butt-Weld Residual Stress Finite-Element Model Validation
,”
2010 Residual Stress Summit
,
Lake Tahoe, CA
.
3.
Muránsky
,
O.
,
Hamelin
,
C. J.
,
Smith
,
M. C.
,
Bendeich
,
P. J.
, and
Edwards
,
L.
,
2012
, “
The Effect of Plasticity Theory on Predicted Residual Stress Fields in Numerical Weld Analyses
,”
Comput. Mater. Sci.
,
54
, pp.
125
134
.10.1016/j.commatsci.2011.10.026
4.
Muránsky
,
O.
,
Smith
,
M. C.
,
Bendeich
,
P. J.
,
Hamelin
,
C. J.
, and
Edwards
,
J. M.
,
2012
, “
Prediction and Measurement of Weld Residual Stresses in Thermally Aged Girth-Welded Austenitic Steel Pipes
,”
Proceedings of the ASME 2012 Pressure Vessels & Piping Division Conference
, Paper No. PVP2012-78409,
Toronto, Ontario, Canada
.
5.
Kerr
,
M.
, and
Rathbun
,
H. J.
,
2012
, “
Summary of Finite Element (FE) Sensitivity Studies Conducted in Support of the NRC/EPRI Welding Residual Stress (WRS) Program
,”
Proceedings of the ASME 2012 Pressure Vessels & Piping Division Conference
, Paper No. PVP2012-78883,
Toronto, Ontario, Canada
.
6.
Hubbard
,
C. R.
,
2011
, “
Neutron Diffraction Residual Strain Tensor Measurements Within the Phase IA Weld Mock-up Plate P-5
,” ORNL/TM-2011/304,
Oak Ridge National Laboratory
, Oak Ridge, TN.
7.
Hubbard
,
C. R.
,
2011
, “
Neutron Diffraction Residual Stress Measurements Within the Phase III Nozzle S-3
,” ,
Oak Ridge National Laboratory
, Oak Ridge, TN.
8.
Bouchard
,
P. J.
,
2007
, “
Validated Residual Stress Profiles for Fracture Assessments of Stainless Steel Pipe Girth Welds
,”
Int. J. Pressure Vessels Piping
,
84
(
4
), pp.
195
222
.10.1016/j.ijpvp.2006.10.006
9.
Muránsky
,
O.
,
Smith
,
M. C.
,
Bendeich
,
P. J.
, and
Edwards
,
L.
,
2011
, “
Validated Numerical Analysis of Residual Stresses in Safety Relief Valve (SRV) Nozzle Mock-Ups
,”
Comput. Mater. Scie.
,
50
(
7
), pp.
2203
2215
.10.1016/j.commatsci.2011.02.031
10.
Rathbun
,
H. J.
,
Fredette
,
L. F.
,
Scott
,
P. M.
,
Csontos
,
A. A.
, and
Rudland
,
D. L.
,
2011
, “
NRC Welding Residual Stress Validation Program International Round Robin Program and Findings
,” PVP2011-57642,
Proceedings of the 2011 ASME Pressure Vessels & Piping Division Conference
,
Baltimore, MD
.
11.
Fredette
,
L. F.
,
Broussard
,
J. E.
,
Kerr
,
M.
, and
Rathbun
,
H. J.
,
2011
, “
NRC/EPRI Welding Residual Stress Validation Program: Phase III Details and Findings
,” PVP2011-57645,
Proceedings of the ASME 2011 Pressure Vessels & Piping Division Conference
,
Baltimore, MD
.
12.
EPRI
,
2011
, “
Materials Reliability Program: Finite-Element Model Validation for Dissimilar Metal Butt-Welds
,” MRP-316,
Electric Power Research Institute
, Palo Alto, CA.
13.
ASTM
,
2010
, “
Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
,” E177,
ASTM International
, West Conshohocken, PA.
14.
Patel
,
V. I.
,
Muránsky
,
O.
,
Hamelin
,
C. J.
,
Olson
,
M. D.
,
Hill
,
M. R.
, and
Edwards
,
L.
,
2013
, “
A Validated Numerical Model for Residual Stress Predictions in an Eight-Pass-Welded Stainless Steel Plate
,”
Mater. Sci. Forum
,
777
, pp.
46
515
.10.4028/www.scientific.net/MSF.777.46
15.
Prime
,
M. B.
,
2001
, “
Cross-Sectional Mapping of Residual Stresses by Measuring the Surface Contour after a Cut
,”
J. Eng. Mater. Tech.
,
123
, pp.
162
168
.10.1115/1.1345526
16.
Prime
,
M. B.
, and
DeWald
,
A. T.
,
2013
,
Practical Residual Stress Measurement Methods
, Ch. 5,
John Wiley & Sons
,
West Sussex, UK
.
17.
Thorpe
,
W. R.
,
Rose
,
C. W.
, and
Simpson
,
R. W.
,
1979
, “
Areal Interpolation of Rainfall with Double Fourier Series
,”
J. Hydrol.
,
42
(
1
), pp.
171
177
.10.1016/0022-1694(79)90012-X
18.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
2009
,
Experimentation, Validation, and Uncertainty Analysis for Engineers
,
Wiley
,
Hoboken, NJ
.
19.
Hill
,
M. R.
, and
Olson
,
M. D.
,
2014
, “
Repeatability of the Contour Method for Residual Stress Measurement
,”
Exp. Mech.
,
54
(
7
), pp.
1269
1277
.10.1007/s11340-014-9867-1
20.
Wong
,
W.
, and
Hill
,
M. R.
,
2013
, “
Superposition and Destructive Residual Stress Measurements
,”
Exp. Mech.
,
53
(
3
), pp.
339
344
.10.1007/s11340-012-9636-y
21.
Pagliaro
,
P.
,
Prime
,
M. B.
,
Robinson
,
J. S.
,
Clausen
,
B.
,
Swenson
,
H.
,
Steinzig
,
M.
, et al. ,
2010
, “
Measuring Inaccessible Residual Stresses Using Multiple Methods and Superposition
,”
Exp. Mech.
,
51
(
7
), pp.
1123
1134
.10.1007/s11340-010-9424-5
22.
Patel
,
V. I.
,
Muránsky
,
O.
,
Hamelin
,
C. J.
,
Olson
,
M. D.
,
Hill
,
M. R.
, and
Edwards
,
L.
,
2014
, “
Finite Element Modelling of Welded Austenitic Stainless Steel Plate With 8-Passes
,”
Proceedings of the ASME 2014 Pressure Vessels & Piping Division Conference
, Paper No. PVP2014-28209,
Anaheim, CA
.
23.
Ohms
,
C.
,
Wimpory
,
R. C.
,
Katsareas
,
D. E.
, and
Youtsos
,
A. G.
,
2009
, “
NET TG1: Residual Stress Assessment by Neutron Diffraction and Finite Element Modeling on a Single Bead Weld on a Steel Plate
,”
Int. J. Pressure Vessels Pip.
,
86
(
1
), pp.
63
72
.10.1016/j.ijpvp.2008.11.009
24.
Smith
,
M. C.
, and
Smith
,
A. C.
,
2009
, “
NeT Bead-on-Plate Round Robin: Comparison of Residual Stress Predictions and Measurements
,”
Int. J. Pressure Vessels Pip.
,
86
(
1
), pp.
79
95
.10.1016/j.ijpvp.2008.11.017
25.
Bouchard
,
P. J.
,
2009
, “
The NeT Bead-on-Plate Benchmark for Weld Residual Stress Simulation
,”
Int. J. Pressure Vessels Pip.
,
86
(
1
), pp.
31
42
.10.1016/j.ijpvp.2008.11.019
26.
ISO
,
2005
, “
Non-Destructive Testing—Standard Test Method for Determining Residual Stresses by Neutron Diffraction
,” ISO/TS 21432,
International Organization for Standardization
, Geneva, Switzerland.
27.
Olson
,
M. D.
,
Hill
,
M. R.
,
Patel
,
V. I.
,
Muránsky
,
O.
, and
Sisneros
,
T.
,
2014
, “
Biaxial Residual Stress Mapping for a Stainless Steel Welded Plate
,”
Pressure Vessel Technol.
(submitted).
28.
Muránsky
,
O.
,
Smith
,
M.
,
Bendeich
,
P.
,
Holden
,
T.
,
Luzin
,
V.
,
Martins
,
R.
, et al. ,
2012
, “
Comprehensive Numerical Analysis of a Three-Pass Bead-in-Slot Weld and Its Critical Validation Using Neutron and Synchrotron Diffraction Residual Stress Measurements
,”
Int. J. Solids Struct.
,
49
(
9
), pp.
1045
1062
.10.1016/j.ijsolstr.2011.07.006
29.
Bevington
,
P. R.
, and
Robinson
,
D. K.
,
1969
,
Data Reduction and Error Analysis for the Physical Sciences
,
McGraw-Hill
,
New York
.
30.
Olson
,
M. D.
,
DeWald
,
A. T.
,
Hill
,
M. R.
, and
Prime
,
M. B.
,
2014
, “
Contour Method Uncertainty Estimation
,”
Exp. Mech.
(in press).
31.
Francis
,
J. A.
,
Bhadeshia
,
H. K. D. H.
, and
Withers
,
P. J.
,
2007
, “
Welding Residual Stresses in Ferritic Power Plant Steels
,”
Mater. Sci. Technol.
,
23
(
9
), pp.
1009
1020
.10.1179/174328407X213116
You do not currently have access to this content.