The most diffused neutronics modeling approach in control-oriented simulators is pointwise kinetics. In the framework of developing control strategies for innovative reactor concepts, such a simplified description is less effective as it prevents the possibility of exploiting the capabilities of advanced control schemes. In the present work, in order to overcome these limitations, a spatial neutronics description based on the modal method has been considered. This method allows separating the spatial and time dependence of the neutron flux, which can be represented as the sum of the eigenfunctions of the neutron diffusion equation weighted by time-dependent coefficients. In this way, the system dynamic behavior is reduced to the study of these coefficients and can be represented by a set of ordinary differential equations (ODEs), reducing the simulation computational burden. In this paper, a test case involving three fuel pins of an innovative lead-cooled fast reactor has been set up and investigated. Once the eigenfunctions are obtained, the set of ODEs for studying the time-dependent coefficients has been derived and then implemented in the DYMOLA environment, developing an object-oriented component based on the reliable, tested, and well-documented Modelica language. In addition, a heat transfer model for the fuel pin has been developed, still drawing on the principles of the object-oriented modeling. Finally, in order to assess the performance of the developed spatial neutronics component, the outcomes have been compared with the reference results obtained from the multigroup diffusion partial differential equations, achieving a satisfactory agreement.

References

References
1.
IAEA
,
1999
, “
Modern Instrumentation and Control for Nuclear Power Plants: A Guidebook
,” ,
International Atomic Energy Agency
, Vienna.
2.
IAEA
,
2009
, “
Implementing Digital Instrumentation and Control Systems in the Modernization of Nuclear Power Plants
,” ,
International Atomic Energy Agency
, Vienna.
3.
GIF
,
2002
, “
A Technology Roadmap for Generation IV Nuclear Energy System
,”
US DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum
, .
4.
Fritzson
,
P.
,
2004
,
Principles of Object-Oriented Modeling and Simulation with Modelica 2.1
,
Wiley-IEEE Press
,
New York, NY
.
5.
Modelica
,
2011
, http://www.modelica.org.
6.
Fritzson
,
P.
,
2011
, “
A Cyber-Physical Modeling Language and the OpenModelica Environment
,”
Proceedings of the International Wireless Communications and Mobile Computing Conference
,
Turkey
,
July 4–8
,
IEEE
,
Piscataway, NJ
, pp.
1648
1653
.
7.
Cammi
,
A.
,
Casella
,
F.
,
Ricotti
,
M. E.
, and
Schiavo
,
F.
,
2005
, “
Object-Oriented Modelling, Simulation and Control of IRIS Nuclear Power Plant with Modelica
,”
Proceedings of the 4th International Modelica Conference
,
Hamburg, Germany
,
Mar. 7–8
,
The Modelica Association and the Department of Thermodynamics, Hamburg University of Technology
,
Hamburg, Germany
, pp.
423
432
.
8.
Souyri
,
A.
,
Bouskela
,
D.
,
Pentori
,
B.
, and
Kerkar
,
N.
,
2006
, “
Pressurized Water Reactor Modelling with Modelica
,”
Proceedings of the 5th International Modelica Conference
,
Vienna, Austria
,
Sept. 4–5
,
The Modelica Association and the Arsenal Research
,
Vienna, Austria
, pp.
127
133
.
9.
Ponciroli
,
R.
,
Bigoni
,
A.
,
Cammi
,
A.
,
Lorenzi
,
S.
, and
Luzzi
,
L.
,
2014
, “
Object-Oriented Modelling and Simulation for the ALFRED Dynamics
,”
Prog. Nucl. Energy
,
71
, pp. 
15
29
.10.1016/j.pnucene.2013.10.013
10.
Schultz
,
M. A.
,
1961
,
Control of Nuclear Reactors and Power Plants
,
McGraw-Hill
,
New York
.
11.
Hetrick
,
D. L.
,
1993
,
Dynamics of Nuclear Reactors
,
American Nuclear Society, Inc.
,
La Grange Park, IL
.
12.
Stacey
,
W. M.
,
1969
,
Space-Time Nuclear Reactor Kinetics
,
Academic Press
,
Waltham, MA
.
13.
Dulla
,
S.
,
Picca
,
P.
, and
Ravetto
,
P.
,
2009
, “
Variational Methods in the Kinetic Modeling of Nuclear Reactors: Recent Advances
,”
Proceedings of the International Conference on Mathematics, Computational Methods and Reactor Physics
,
Saratoga Springs, NY
,
May 3–7
,
American Nuclear Society
,
LaGrange Park, IL
.
14.
Xia
,
L.
,
Jiang
,
J.
,
Javidnia
,
H.
, and
Luxat
,
J. C.
,
2012
, “
Performance Evaluation of a 3-D Kinetic Model for CANDU Reactors in a Closed-Loop Environment
,”
Nucl. Eng. Des.
,
243
, pp. 
76
86
.10.1016/j.nucengdes.2011.11.034
15.
Sartori
,
A.
,
Baroli
,
D.
,
Cammi
,
A.
,
Chiesa
,
D.
,
Luzzi
,
L.
,
Ponciroli
,
R.
,
Previtali
,
E.
,
Ricotti
,
M. E.
,
Rozza
,
G.
, and
Sisti
,
M.
,
2013
, “
Comparison of a Modal Method and a Proper Orthogonal Decomposition Approach for Multi-Group Time-Dependent Reactor Spatial Kinetics
,”
Ann. Nucl. Energy
,
71
, pp. 
217
229
.10.1016/j.anucene.2014.03.043
16.
Alemberti
,
A.
,
Frogheri
,
M.
, and
Mansani
,
L.
,
2013
, “
The Lead Fast Reactor Demonstrator (ALFRED) and ELFR Design
,”
Proceedings of the IAEA International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios
,
Paris, France
,
Mar. 4–7
,
International Atomic Energy Agency
,
Vienna, Austria
, Paper No. IAEA-CN-199/437.
17.
Grasso
,
G.
,
Petrovich
,
C.
,
Mattioli
,
D.
,
Artioli
,
C.
,
Sciora
,
P.
,
Gugiu
,
D.
,
Bandini
,
G.
,
Bubelis
,
E.
, and
Mikityuk
,
K.
,
2014
, “
The Core Design of ALFRED, a Demonstrator for the European Lead-Cooled Reactors
,”
Nucl. Eng. Des.
,
278
, pp. 
287
301
.10.1016/j.nucengdes.2014.07.032
18.
Duderstadt
,
J. J.
, and
Hamilton
,
L. J.
,
1976
,
Nuclear Reactor Analysis
,
John Wiley and Sons
,
New York
.
19.
Henry
,
A. F.
,
1975
,
Nuclear Reactor Analysis
,
The MIT Press
,
Cambridge, MA
.
20.
COMSOL
,
2011
, “
COMSOL Multiphysics® 4.2a, User’s Guide
,”
COMSOL Inc.
,
Stockholm, Sweden
.
21.
SERPENT
,
2011
, “
PSG2/Serpent Monte Carlo Reactor Physics Burnup Calculation Code
,” http://montecarlo.vtt.fi.
22.
Aufiero
,
M.
,
Cammi
,
A.
,
Fiorina
,
C.
,
Luzzi
,
L.
, and
Sartori
,
A.
,
2013
, “
A Multiphysics Time-Dependent Model for the Lead Fast Reactor Single-Channel Analysis
,”
Nucl. Eng. Des.
,
256
, pp. 
14
27
.10.1016/j.nucengdes.2012.11.019
23.
Lorenzi
,
S.
,
Cammi
,
A.
,
Luzzi
,
L.
, and
Ponciroli
P.
,
2014
, “
Development of a Spatial Neutronics Model for Control-Oriented Dynamics Simulation
,”
Proceedings of the International Conference On Nuclear Engineering
,
Prague, Czech Republic
,
July 7–11
, Paper No. 30818.
24.
Elmqvist
,
H.
,
Cellier
,
F. E.
, and
Otter
,
M.
,
1993
, “
Object-Oriented Modeling of Hybrid Systems
,”
Proceedings of the European Simulation Symposium (ESS’93)
,
Delft, Netherlands
,
Oct. 25–28
,
SCS Publisher
,
La Jolla, CA
, pp.
31
41
.
25.
Casella
,
F.
, and
Leva
,
A.
,
2006
, “
Modeling of Thermo-Hydraulic Power Generation Processes Using Modelica
,”
Math. Comput. Model. Dyn. Sys.
,
12
(
1
), pp. 
19
33
.10.1080/13873950500071082
26.
Todreas
,
N. E
, and
Kazimi
,
M. S.
,
2012
, Nuclear Systems,
Thermal Hydraulic Fundamentals
, Vol. 
1
,
Taylor & Francis
,
Boca Raton, FL
.
27.
Luzzi
,
L.
,
Cammi
,
A.
,
Di Marcello
,
V.
,
Lorenzi
,
S.
,
Pizzocri
,
D.
, and
Van Uffelen
,
P.
,
2014
, “
Application of the TRANSURANUS Code for the Fuel Pin Design Process of the ALFRED Reactor
,”
Nucl. Eng. Des.
,
277
, pp. 
173
187
.10.1016/j.nucengdes.2014.06.032
This content is only available via PDF.
You do not currently have access to this content.