In nuclear power plants, vibration stress of piping is frequently measured to prevent the occurrence of fatigue failure. A simpler and more efficient measurement method is desired for rapid integrity evaluation of piping. In this study, a method to measure vibration stress in a noncontact manner using optical displacement sensors is presented and validated. The proposed method estimates vibration-induced stress of small-bore piping directly using noncontact sensors based on a light-emission diode. First, the noncontact measurement method was proposed, and the measurement instrument based on the proposed method was developed for the validation. Next, vibration measurement experiments using the instrument were conducted for a mock-up piping system and an actual piping system. The measurement results were compared with the values measured by the conventional method of known accuracy using strain gauges. From this comparison, the proposed noncontact measurement method was demonstrated to be able to provide sufficient accuracy for practical use.

References

References
1.
Bush
,
S. H.
,
1988
, “
Statistics of Pressure Vessel and Piping Failures
,”
J. Pressure Vessel Technol.
,
110
, pp. 
225
233
.10.1115/1.3265593
2.
Gamble
,
R. M.
, and
Tagart
,
S. W. J.
,
1991
, “
A Method to Assign Failure Rates for Piping Reliability Assessments
,”
Proceedings of ASME Pressure Vessels and Piping Conference
,
San Diego, CA
,
June 23–27
, PVP-Vol. 
215
, pp. 
3
12
.
3.
Bush
,
S. H.
,
1992
, “
Failure Mechanisms in Nuclear Power Plant Piping Systems
,”
J. Pressure Vessel Technol.
,
114
, pp. 
389
395
.10.1115/1.2929244
4.
Gosselin
,
S. R.
, and
Fleming
,
K. N.
,
1997
, “
Evaluation of Pipe Failure Potential via Degradation Mechanism Assessment
,”
Proceedings of 5th International Conference on Nuclear Engineering (ICONE 5)
,
Nice, France
,
May 26–30
, ICONE-2641,
American Society of Mechanical Engineers (ASME)
,
New York, NY
.
5.
Lydell
,
B. O. Y.
,
2000
, “
Pipe Failure Probability—The Thomas Paper Revised
,”
Reliab. Eng. Syst. Saf.
,
68
, pp. 
207
217
.10.1016/S0951-8320(00)00016-8
6.
Moussou
,
P.
,
Cambter
,
S.
,
Lachene
,
D.
,
Longarini
,
S.
,
Pauthiac
,
L.
, and
Villouvier
,
V.
,
2001
, “
Vibration Investigation of a French PWR Plant Piping System Caused by Cavitating Butterfly Valves
,”
Proceedings of ASME Pressure Vessels and Piping Conference
,
Atlanta, GA
,
July 22–26
, PVP-Vol. 
420-2
, pp. 
99
106
.
7.
Park
,
J. S.
, and
Choi
,
Y. H.
,
2012
, “
Application of Piping Failure Database to Nuclear Safety Issues in Korea
,”
Int. J. Pressure Vessels Pip.
,
90–91
, pp. 
56
60
.10.1016/j.ijpvp.2011.10.008
8.
Noda
,
M.
,
Suzuki
,
M.
,
Maekawa
,
A.
,
Sasaki
,
T.
,
Suyama
,
T.
, and
Fujita
,
K.
,
2006
, “
Methods of Evaluating Vibration Induced Stress of Small-Bore Piping
,”
Proceedings of ASME Pressure Vessels and Piping Conference
,
Vancouver, BC, Canada
,
July 23–27
, PVP2006-ICPVT-11-93198,
American Society of Mechanical Engineers (ASME)
,
New York, NY
.
9.
Bauernfeind
,
V.
,
Bloem
,
T.
,
Pache
,
W.
, and
Diederich
,
H. J.
,
1992
, “
Vibration Monitoring of the Primary Piping System During the Hot Functional Tests of the Mülheim-Kärlich PWR
,”
Nucl. Eng. Des.
,
133
, pp. 
17
21
.10.1016/0029-5493(92)90083-8
10.
Hofstötter
,
P.
,
1994
, “
InService Measurements on Piping Systems and Components in Nuclear Power Plants
,”
Nucl. Eng. Des.
,
147
, pp. 
369
374
.10.1016/0029-5493(94)90219-4
11.
Lu
,
N.
,
Wang
,
X.
, and
Wu
,
X.
,
2005
, “
Piping Vibration Stress Measurement and Life Assessment
,”
Transactions of 18th International Conference on Structural Mechanics in Reactor Technology (SMiRT 18)
,
Beijing, China
,
Aug. 7–12
, SMiRT18-D03-8,
International Association for Structural Mechanics in Reactor Technology (IASMiRT)
,
NC State University, Raleigh, NC
.
12.
Tanaka
,
T.
,
Suzuki
,
S.
,
Nekomoto
,
Y.
, and
Tanaka
,
M.
,
1994
, “
The Development of a Diagnostic and Monitoring System for Vibration Pipe Branches
,”
Nucl. Eng. Des.
,
147
(
3
), pp. 
455
461
.10.1016/0029-5493(94)90228-3
13.
Kunze
,
U.
, and
Bechtold
,
B.
,
1995
, “
New Generation of Monitoring Systems with On-Line Diagnostics
,”
Prog. Nucl. Energy
,
29
(
3–4
), pp. 
215
227
.10.1016/0149-1970(95)00009-9
14.
Finnveden
,
S.
, and
Pinnington
,
P. J.
,
2000
, “
A Velocity Method for Estimating Dynamic Strain and Stress in Pipes
,”
J. Sound Vib.
,
229
(
1
), pp. 
147
182
.10.1006/jsvi.1999.2474
15.
Ovrén
,
C.
,
Adolfsson
,
M.
, and
Hök
,
B
, “
Fiber-Optic Systems for Temperature and Vibration Measurements in Industrial Applications
,”
Opt. Lasers Eng.
,
5
, pp. 
155
172
.10.1016/j.optlastec.2006.12.008
16.
Chitnis
,
V. T.
,
Kumar
,
S.
, and
Sen
,
D.
,
1989
, “
Optical Fiber Sensor for Vibration Amplitude Measurement
,”
J. Lightwave Technol.
,
7
(
4
), pp. 
687
691
.10.1109/50.19096
17.
García
,
Y. R.
,
Corres
,
J. M.
, and
Goicoechea
,
J.
,
2010
, “
Vibration Detection Using Optical Fiber Sensors
,”
J. Sensors
, pp. 
1
12
.10.1155/2010/936487
18.
Doi
,
S. M.
,
Nekomoto
,
Y.
,
Takeishi
,
M.
,
Miyoshi
,
T.
, and
O’Shima
,
E.
,
1999
, “
Development of a High Cycle Vibration Fatigue Diagnostic System with Non-Contact Vibration Sensing
,”
Proceedings of 7th International Conference on Nuclear Engineering (ICONE 7)
,
Tokyo, Japan
,
April 19–23
, ICONE-7344,
American Society of Mechanical Engineers (ASME)
,
New York, NY
.
19.
Chambard
,
J. P.
,
Chalvidan
,
V.
,
Camiel
,
X.
, and
Pascal
,
J. C.
,
2002
, “
Pulsed TV-Holography Recording for Vibration Analysis Applications
,”
Opt. Lasers Eng.
,
38
(
3–4
), pp.
131
143
.10.1016/S0143-8166(02)00006-4
20.
Borza
,
D. N.
,
2004
, “
High-Resolution Time-Average Electronic Holography for Vibration Measurement
,”
Opt. Laser Eng.
,
41
, pp. 
515
527
.10.1016/S0143-8166(03)00016-2
21.
Zhong
,
S.
,
Shen
,
H.
, and
Shen
,
Y.
,
2011
, “
Real-Time Monitoring of Structural Vibration Using Spectral-Domain Optical Coherence Tomography
,”
Opt. Laser Eng.
,
49
, pp. 
127
131
.10.1016/j.optlaseng.2010.08.008
22.
Noda
,
M.
,
Maekawa
,
A.
,
Suzuki
,
M.
, and
Shintani
,
M.
,
2007
, “
Development of Evaluation Method of Vibrational Stress in Piping System Applying Multiple Laser Displacement Sensors
,”
Proceedings of ASME Pressure Vessels and Piping Conference
,
San Antonio, TX
,
July 22–26
, PVP2007-26453,
American Society of Mechanical Engineers (ASME)
,
New York, NY
.
23.
Maekawa
,
A.
, and
Noda
,
M.
,
2010
, “
Development of Methods to Measure Vibrational Stress of Small-Bore Piping with Multiple Contactless Displacement Sensors
,”
Proceedings of 23rd International Congress on Condition Monitoring and Diagnostic Engineering Management (COMADEM2010)
,
Nara, Japan
,
June 28–July 2
,
COMADEM International
,
Birmingham, UK
, pp. 
637
644
.
24.
Maekawa
,
A.
,
Tsuji
,
T.
,
Takahashi
,
T.
, and
Noda
,
M.
,
2014
, “
A Method Using Optical Contactless Displacement Sensors to Measure Vibration Stress of Small-Bore Piping
,”
J. Pressure Vessel Technol.
,
136
,
011202-1
011202-10
.10.1115/1.4025082
25.
Higuchi
,
M.
,
Nakagawa
,
A.
,
Hayashi
,
M.
,
Yamauchi
,
T.
,
Saito
,
M.
,
Iida
,
K.
,
Matsuda
,
F.
, and
Sato
,
M.
,
1996
, “
A Study on Fatigue Strength Reduction Factor for Small Diameter Socket Welded Pipe Joints
,”
Proceedings of ASME Pressure Vessels and Piping Conference
,
Montreal, QC, Canada
,
July 21–26
,
American Society of Mechanical Engineers (ASME)
,
New York, NY
, PVP-Vol. 
338
, pp. 
11
19
.
26.
Higuchi
,
M.
,
Nakagawa
,
A.
,
Iida
,
K.
,
Hayashi
,
M.
,
Yamauchi
,
T.
,
Saito
,
M.
, and
Sato
,
M.
,
1998
, “
Experimental Study on Fatigue Strength of Small-Diameter Socket-Welded Pipe Joints
,”
J. Pressure Vessel Technol.
,
120
, pp. 
149
156
.10.1115/1.2842233
You do not currently have access to this content.