A simulation model for the direct contact condensation of steam in subcooled water is presented that allows determination of major parameters of the process, such as the jet penetration length. Entrainment of water by the steam jet is modeled based on the Kelvin–Helmholtz and Rayleigh–Taylor instability theories. Primary atomization due to acceleration of interfacial waves and secondary atomization due to aerodynamic forces account for the initial size of entrained droplets. The resulting steam-water two-phase flow is simulated based on a one-dimensional two-fluid model. An interfacial area transport equation is used to track changes of the interfacial area density due to droplet entrainment and steam condensation. Interfacial heat and mass transfer rates during condensation are calculated using the two-resistance model. The resulting two-phase flow equations constitute a system of ordinary differential equations, which is solved by means of the explicit Runge–Kutta–Fehlberg algorithm. The simulation results are in good qualitative agreement with published experimental data over a wide range of pool temperatures and mass flow rates.

References

References
1.
Cattadori
,
G.
,
Galbiati
,
L.
,
Mazzocchi
,
L.
, and
Vanini
,
P.
,
1995
, “
A Single-Stage High Pressure Steam Injector for Next Generation Reactors: Test Results and Analysis
,”
Int. J. Multiphase Flow
,
21
(
4
), pp.
591
606
.10.1016/0301-9322(94)00086-Y
2.
Deberne
,
N.
,
Leone
,
J. F.
, and
Lallemand
,
A.
,
2000
, “
Local Measurements in the Flow of a Steam Injector and Visualisation
,”
Int. J. Thermal Sci.
,
39
(
9–11
), pp.
1056
1065
.10.1016/S1290-0729(00)01194-7
3.
Dumaz
,
P.
,
Geffraye
,
G.
,
Kalitvianski
,
V.
,
Verloo
,
E.
,
Valisi
,
M.
,
Méloni
,
P.
,
Achilli
,
A.
,
Schilling
,
R.
,
Malacka
,
M.
, and
Trela
,
M.
,
2005
, “
The DEEPSSI Project, Design, Testing and Modeling of Steam Injectors
,”
Nuclear Eng. Des.
,
235
(
2–4
), pp.
233
251
.10.1016/j.nucengdes.2004.08.058
4.
Chan
,
C.
, and
Lee
,
C.
,
1982
, “
A Regime Map for Direct Contact Condensation
,”
Int. J. Multiphase Flow
,
8
(
1
), pp.
11
20
.10.1016/0301-9322(82)90003-9
5.
Song
,
C. H.
, and
Kim
,
Y. S.
,
2011
, “
Direct Contact Condensation of Steam Jet in a Pool
,”
Adv. Heat Transfer
,
43
, pp.
227
288
.10.1016/B978-0-12-381529-3.00003-7
6.
Song
,
C. H.
,
Cho
,
S.
, and
Kang
,
H. S.
,
2012
, “
Steam Jet Condensation in a Pool: From Fundamental Understanding to Engineering Scale Analysis
,”
J. Heat Transfer
,
134
(
3
), pp.
031004–1
031004–15
.10.1115/1.4005144
7.
Wu
,
X. Z.
,
Yan
,
J. J.
,
Li
,
W. J.
,
Pan
,
D. D.
, and
Liu
,
G. Y.
,
2010
, “
Experimental Investigation of Over-Expanded Supersonic Steam Jet Submerged in Quiescent Water
,”
Exp. Thermal Fluid Sci.
,
34
(
1
), pp.
10
19
.10.1016/j.expthermflusci.2009.08.006
8.
Dahikar
,
S. K.
,
Sathe
,
M. J.
, and
Joshi
,
J. B.
,
2010
, “
Investigation of Flow and Temperature Patterns in Direct Contact Condensation Using PIV, PLIF and CFD
,”
Chem. Eng. Sci.
,
65
(
16
), pp.
4606
4620
.10.1016/j.ces.2010.05.004
9.
Wu
,
X. Z.
,
Yan
,
J. J.
,
Li
,
W. J.
,
Pan
,
D. D.
, and
Liu
,
G. Y.
,
2010
, “
Experimental Study on a Steam-Driven Turbulent Jet in Subcooled Water
,”
Nucl. Eng. Des.
,
240
(
10
), pp.
3259
3266
.10.1016/j.nucengdes.2010.06.007
10.
Kim
,
H. Y.
,
Bae
,
Y. Y.
,
Song
,
C. H.
,
Park
,
J. K.
, and
Choi
,
S. M.
,
2001
, “
Experimental Study on Stable Steam Condensation in a Quenching Tank
,”
Int. J. Energy Res.
,
25
(
3
), pp.
239
252
.10.1002/(ISSN)1099-114X
11.
Wu
,
X. Z.
,
Yan
,
J. J.
,
Shao
,
S. F.
,
Cao
,
Y.
, and
Liu
,
J. P.
,
2007
, “
Experimental Study on the Condensation of Supersonic Steam Jet Submerged in Quiescent Subcooled Water: Steam Plume Shape and Heat Transfer
,”
Int. J. Multiphase Flow
,
33
(
12
), pp.
1296
1307
.10.1016/j.ijmultiphaseflow.2007.06.004
12.
Gulawani
,
S. S.
,
Joshi
,
J. B.
,
Shah
,
M. S.
,
RamaPrasad
,
C. S.
, and
Shukla
,
D. S.
,
2006
, “
CFD Analysis of Flow Pattern and Heat Transfer in Direct Contact Steam Condensation
,”
Chem. Eng. Sci.
,
61
(
16
), pp.
5204
5220
.10.1016/j.ces.2006.03.032
13.
Kerney
,
P. J.
,
Faeth
,
G. M.
, and
Olson
,
D. R.
,
1972
, “
Penetration Characteristics of a Submerged Steam Jet
,”
AIChE J.
,
18
(
3
), pp.
548
553
.10.1002/(ISSN)1547-5905
14.
Weimer
,
J. C.
,
Faeth
,
G. M.
, and
Olson
,
D. R.
,
1973
, “
Penetration of Vapor Jets Submerged in Subcooled Liquids
,”
AIChE J.
,
19
(
3
), pp.
552
558
.10.1002/(ISSN)1547-5905
15.
Chun
,
M. H.
,
Kim
,
Y. S.
, and
Park
,
J. W.
,
1996
, “
An Investigation of Direct Condensation of Steam Jet in Subcooled Water
,”
Int. Commun. Heat Mass Transfer
,
23
(
7
), pp.
947
958
.10.1016/0735-1933(96)00077-2
16.
Chen
,
L. D.
, and
Faeth
,
G. M.
,
1982
, “
Condensation of Submerged Vapor Jets in Subcooled Liquids
,”
J Heat Transfer
,
104
(
4
), pp.
774
780
.10.1115/1.3245199
17.
Gulawani
,
S. S.
,
Deshpande
,
S. S.
,
Joshi
,
J. B.
,
Shah
,
M. S.
,
Prasad
,
C. S. R.
, and
Shukla
,
D. S.
,
2007
, “
Submerged Gas Jet Into a Liquid Bath: A Review
,”
Ind. Eng. Chem. Res.
,
46
(
10
), pp.
3188
3218
.10.1021/ie0608511
18.
Taylor
,
G. I.
,
1945
, “
Dynamics of a Mass of Hot Gas Rising in Air
,”
Los Alamos National Laboratory
, Tech. Rep. LA-236.
19.
Morton
,
B. R.
,
Taylor
,
G.
, and
Turner
,
J. S.
,
1956
, “
Turbulent Gravitational Convection From Maintained and Instantaneous Sources
,”
Proc. Roy. Soc. London A. Math. Phys. Sci.
,
234
(
1196
), pp.
1
23
.10.1098/rspa.1956.0011
20.
Ricou
,
F. P.
, and
Spalding
,
D. B.
,
1961
, “
Measurements of Entrainment by Axisymmetrical Turbulent Jets
,”
J. Fluid Mech.
,
11
(
1
), pp.
21
32
.10.1017/S0022112061000834
21.
Fauske
,
H. K.
, and
Grolmes
,
M. A.
,
1992
, “
Mitigation of Hazardous Emergency Release Source Terms Via Quench Tanks
,”
Plant/Oper. Prog.
,
11
(
2
), pp.
121
125
.10.1002/(ISSN)1549-4632
22.
Epstein
,
M.
, and
Fauske
,
H.
,
2001
, “
Applications of the Turbulent Entrainment Assumption to Immiscible Gas-Liquid and Liquid–Liquid Systems
,”
Chem. Eng. Res. Des.
,
79
(
4
), pp.
453
462
.10.1205/026387601750282382
23.
Villermaux
,
E.
,
1998
,“
Mixing and Spray Formation in Coaxial Jets
,”
J. Propul. Power
,
14
(
5
), pp.
807
817
.10.2514/2.5344
24.
Raynal
,
L.
,
1997
, “
Instabilité et entrainement à l’interface d’une couche de mélange liquide-gaz—Instability and Entrainment at the Interface of a Liquid-Gas Mixing Layer
,” Ph.D. thesis,
Université de Grenoble
,
Grenoble, France
.
25.
Weiland
,
C.
, and
Vlachos
,
P. P.
,
2013
, “
Round Gas Jets Submerged in Water
,”
Int. J. Multiphase Flow
,
48
, pp.
46
57
.10.1016/j.ijmultiphaseflow.2012.08.002
26.
Varga
,
C. M.
,
Lasheras
,
J. C.
, and
Hopfinger
,
E. J.
,
2003
, “
Initial Breakup of a Small-Diameter Liquid Jet by a High-Speed Gas Stream
,”
J. Fluid Mech.
,
497
, pp.
405
434
.10.1017/S0022112003006724
27.
Guildenbecher
,
D. R.
,
López-Rivera
,
C.
, and
Sojka
,
P. E.
,
2009
, “
Secondary Atomization
,”
Exp. Fluids
,
46
(
3
), pp.
371
402
.10.1007/s00348-008-0593-2
28.
Wert
,
K. L.
,
1995
, “
A Rationally-Based Correlation of Mean Fragment Size for Drop Secondary Breakup
,”
Int. J. Multiphase Flow
,
21
(
6
), pp.
1063
1071
.10.1016/0301-9322(95)00036-W
29.
Hsiang
,
L. P.
, and
Faeth
,
G. M.
,
1992
, “
Near-Limit Drop Deformation and Secondary Breakup
,”
Int. J. Multiphase Flow
,
18
(
5
), pp.
635
652
.10.1016/0301-9322(92)90036-G
30.
Ishii
,
M.
, and
Kim
,
S.
,
2004
, “
Development of One-Group and Two-Group Interfacial Area Transport Equation
,”
Nucl. Sci. Eng.
,
146
(
3
), pp.
257
273
.
31.
Brucker
,
G. G.
, and
Sparrow
,
E. M.
,
1977
, “
Direct Contact Condensation of Steam Bubbles in Water at High Pressure
,”
Int. J. Heat Mass Transfer
,
20
(
4
), pp.
371
381
.10.1016/0017-9310(77)90158-2
32.
Weinberg
,
S.
,
1952
, “
Heat Transfer to Low Pressure Sprays of Water in a Steam Atmosphere
,”
Proc. Inst. Mech. Eng., London
,
1
(
6
), pp.
240
252
.
33.
Hughmark
,
G. A.
,
1967
, “
Mass and Heat Transfer From Rigid Spheres
,”
AIChE J.
,
13
(
6
), pp.
1219
1221
.10.1002/(ISSN)1547-5905
34.
Ishii
,
M.
, and
Mishima
,
K.
,
1984
, “
Two-Fluid Model and Hydrodynamic Constitutive Relations
,”
Nucl. Eng. Des.
,
82
(
2–3
), pp.
107
126
.10.1016/0029-5493(84)90207-3
35.
Fehlberg
,
E.
,
1969
, “
Low-Order Classical Runge-Kutta Formulas With Stepsize Control and Their Application to Some Heat Transfer Problems
,”
National Aeronautics and Space Administration
, Washington, DC, .
36.
Gough
,
B.
, ed.,
2009
,
GNU Scientific Library Reference Manual
,
3rd revised ed.
,
Network Theory Ltd.
,
Bristol
.
37.
Loth
,
E.
, and
Faeth
,
G. M.
,
1989
, “
Structure of Underexpanded Round Air Jets Submerged in Water
,”
Int. J. Multiphase Flow
,
15
(
4
), pp.
589
603
.10.1016/0301-9322(89)90055-4
38.
Wagner
,
W.
,
Cooper
,
J. R.
,
Dittmann
,
A.
,
Kijima
,
J.
,
Kretzschmar
,
H.-J.
,
Kruse
,
A.
,
Mareš
,
R.
,
Oguchi
,
K.
,
Sato
,
H.
,
Stöcker
,
I.
,
Šifner
,
O.
,
Takaishi
,
Y.
,
Tanishita
,
I.
,
Trübenbach
,
J.
, and
Willkommen
,
T.
,
2000
, “
The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam
,”
J. Eng. Gas Turbine Power
,
122
(
1
), pp.
150
185
.10.1115/1.483186
39.
Wu
,
X. Z.
,
Yan
,
J. J.
,
Li
,
W. J.
,
Pan
,
D. D.
, and
Chong
,
D. T.
,
2009
, “
Experimental Study on Sonic Steam Jet Condensation in Quiescent Subcooled Water
,”
Chem. Eng. Sci.
,
64
(
23
), pp.
5002
5012
.10.1016/j.ces.2009.08.007
40.
Heinze
,
D.
,
Schulenberg
,
T.
, and
Behnke
,
L.
,
2013
, “
Modeling of Steam Expansion in a Steam Injector by Means of the Classical Nucleation Theory
,”
Proceedings of the 15th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-15)
.
You do not currently have access to this content.