Analytical and numerical investigations were carried out to show that the characteristics and the numerical stability of the two-fluid model are improved by the use of the interfacial pressure terms that express the pressure difference between bubbles and continuous liquid phase in bubbly two-phase flow. In particular, it was demonstrated that the numerical stability is enhanced not only in the simulation of adiabatic two-phase flow but also in the simulation of subcooled flow boiling.

References

References
1.
Lyczkowski
,
R. W.
,
Gidaspow
,
D.
,
Solbrig
,
C. W.
, and
Hughes
,
E. D.
,
1978
, “
Characteristics and Stability Analyses of Transient One-Dimensional Two-Phase Flow Equations and Their Finite Difference Approximations
,”
Nucl. Sci. Eng.
,
66
(
3
), pp. 
378
396
.10.13182/NSE78-4
2.
Stewart
,
H. B.
, and
Wendroff
,
B.
,
1984
, “
Two-Phase Flows: Models and Methods
,”
J. Comput. Phys.
,
56
(
3
), pp. 
363
409
, doi:10.1016/0021-9991(84)90103-7.
3.
Okawa
,
T.
, and
Tomiyama
,
A.
,
1995
, “
Applicability of High-Order Upwind Difference Methods to the Two-Fluid Model
,”
Advances in Multiphase Flow
,
Elsevier
,
Amsterdam
, pp. 
227
240
, ISBN-13: 978-0-444-81811-9.
4.
Ramshaw
,
J. D.
, and
Trapp
,
J. A.
,
1978
, “
Characteristics, Stability, and Short-Wavelength Phenomena in Two-Phase Flow Equation Systems
,”
Nucl. Sci. Eng.
,
66
(
1
), pp. 
93
102
.
5.
Rousseau
,
J. C.
, and
Ferch
,
R. L.
,
1979
, “
A Note on Two-Phase Separated Flow Models
,”
Int. J. Multiphase Flow
,
5
(
6
), pp. 
489
493
, doi:10.1016/0301-9322(79)90034-X.
6.
Ransom
,
V. H.
, and
Hicks
,
D. L.
,
1984
, “
Hyperbolic Two-Pressure Models for Two-Phase Flow
,”
J. Comput. Phys.
,
53
(
1
), pp. 
124
151
, doi:10.1016/0021-9991(84)90056-1.
7.
Tatsumi
,
T.
,
1995
,
Continuum Mechanics
,
Iwanami Shoten
,
Tokyo, Japan
, Chap. VI, ISBN-13: 978-4000079228.
8.
Stuhmiller
,
J. H.
,
1977
, “
The Influence of Interfacial Pressure Forces on the Character of Two-Phase Flow Model Equations
,”
Int. J. Multiphase Flow
,
3
(
6
), pp. 
551
560
, doi:10.1016/0301-9322(77)90029-5.
9.
Rietema
,
K.
, and
Van Den Akker
,
H. E. A.
,
1983
, “
On the Momentum Equations in Dispersed Two-Phase Systems
,”
Int. J. Multiphase Flow
,
9
(
1
), pp. 
21
36
, 10.1016/0301-9322(83)90004-6.
10.
Prosperetti
,
A.
, and
Jones
,
A. V.
,
1984
, “
Pressure Forces in Disperse Two-Phase Flow
,”
Int. J. Multiphase Flow
,
10
(
4
), pp. 
425
440
, doi:10.1016/0301-9322(84)90054-5.
11.
Jones
,
A. V.
, and
Prosperetti
,
A.
,
1985
, “
On the Suitability of First-Order Differential Models for Two-Phase Flow Prediction
,”
Int. J. Multiphase Flow
,
11
(
2
), pp. 
133
148
, doi:10.1016/0301-9322(85)90041-2.
12.
Okawa
,
T.
, and
Kataoka
,
I.
,
2000
, “
Mathematical Well-Posedness of a Two-Fluid Equations for Bubbly Two-Phase Flow
,”
Trans. JSME B
,
66
(
646
), pp. 
1281
1287
.
13.
Okawa
,
T.
, and
Kataoka
,
I.
,
2000
, “
Characteristics and Stability of a Two-Fluid Model for Bubbly Two-Phase Flow
,”
Proceedings of the 8th International Conference on Nuclear Engineering, ICONE-8058
,
Baltimore, MD
,
April 2–6
.
14.
Akimoto
,
H.
,
Abe
,
Y.
,
Ohnuki
,
A.
, and
Murao
,
Y.
,
1991
, “
MINI-TRAC Code: A Driver Program for Assessment of Constitutive Equations of Two-Fluid Model
,”
Japan Atomic Energy Research Institute
, Ibaraki, Japan, .
15.
Japan Nuclear Energy Safety Organization
,
2008
, “
Analysis of RIA Using a Three-Dimensional Code of Neutron Kinetics and Thermal-Hydraulics
,”
Japan Nuclear Energy Safety Organization
, Tokyo, Japan, .
16.
Mahaffy
,
J.
,
1982
, “
A Stability-Enhancing Two-Step Method for Fluid Flow Calculations
,”
J. Comput. Phys.
,
46
(
3
), pp. 
329
341
, doi:10.1016/0021-9991(82)90019-5.
17.
Ransom
,
V. H.
, et al. ,
1985
,
RELAP5/MOD2 Code Manual
,
Idaho National Engineering Laboratory
, Idaho, .
18.
Liles
,
D. R.
, et al. ,
1988
, “
TRAC-PF1/MOD1, Correlations and Models
,”
Los Alamos National Laboratory
, New Mexico, .
19.
Borkowski
,
J. A.
,
Giles
,
M. M.
,
Wade
,
N. L.
,
Shumway
,
R. W.
, and
Rouhani
,
S. Z.
,
1992
,
TRAC-BF1/MOD1: An Advanced Best-Estimate Computer Program for BWR Accident Analysis. Model Description
,
Idaho National Engineering Laboratory
, Idaho, .
20.
Collier
,
J. G.
, and
Thome
,
J. R.
,
1994
,
Convective Boiling and Condensation
,
Oxford University Press
,
Oxford, UK
, Chap. VII, ISBN-13: 978-0198562962.
21.
Lahey
,
R. T.
,
1978
, “
A Mechanistic Subcooled Boiling Model
,”
Proceedings of the 6th International Heat Transfer Conference
,
Toronto, Canada
,
Aug. 7–11
, pp. 
293
297
.
22.
Bestion
,
D.
,
1990
, “
The Physical Closure Laws in the CATHARE Code
,”
Nucl. Eng. Des.
,
124
(
3
), pp. 
229
245
, doi:10.1016/0029-5493(90)90294-8.
You do not currently have access to this content.