Analytical and numerical investigations were carried out to show that the characteristics and the numerical stability of the two-fluid model are improved by the use of the interfacial pressure terms that express the pressure difference between bubbles and continuous liquid phase in bubbly two-phase flow. In particular, it was demonstrated that the numerical stability is enhanced not only in the simulation of adiabatic two-phase flow but also in the simulation of subcooled flow boiling.
Issue Section:
Research Papers
Topics:
Boiling,
Flow (Dynamics),
Fluids,
Numerical stability,
Pressure,
Subcooling,
Two-phase flow,
Simulation,
Bubbles
References
1.
Lyczkowski
, R. W.
, Gidaspow
, D.
, Solbrig
, C. W.
, and Hughes
, E. D.
, 1978
, “Characteristics and Stability Analyses of Transient One-Dimensional Two-Phase Flow Equations and Their Finite Difference Approximations
,” Nucl. Sci. Eng.
, 66
(3
), pp. 378
–396
.10.13182/NSE78-42.
Stewart
, H. B.
, and Wendroff
, B.
, 1984
, “Two-Phase Flows: Models and Methods
,” J. Comput. Phys.
, 56
(3
), pp. 363
–409
, doi:10.1016/0021-9991(84)90103-7.3.
Okawa
, T.
, and Tomiyama
, A.
, 1995
, “Applicability of High-Order Upwind Difference Methods to the Two-Fluid Model
,” Advances in Multiphase Flow
, Elsevier
, Amsterdam
, pp. 227
–240
, ISBN-13: 978-0-444-81811-9.4.
Ramshaw
, J. D.
, and Trapp
, J. A.
, 1978
, “Characteristics, Stability, and Short-Wavelength Phenomena in Two-Phase Flow Equation Systems
,” Nucl. Sci. Eng.
, 66
(1
), pp. 93
–102
.5.
Rousseau
, J. C.
, and Ferch
, R. L.
, 1979
, “A Note on Two-Phase Separated Flow Models
,” Int. J. Multiphase Flow
, 5
(6
), pp. 489
–493
, doi:10.1016/0301-9322(79)90034-X.6.
Ransom
, V. H.
, and Hicks
, D. L.
, 1984
, “Hyperbolic Two-Pressure Models for Two-Phase Flow
,” J. Comput. Phys.
, 53
(1
), pp. 124
–151
, doi:10.1016/0021-9991(84)90056-1.7.
Tatsumi
, T.
, 1995
, Continuum Mechanics
, Iwanami Shoten
, Tokyo, Japan
, Chap. VI, ISBN-13: 978-4000079228.8.
Stuhmiller
, J. H.
, 1977
, “The Influence of Interfacial Pressure Forces on the Character of Two-Phase Flow Model Equations
,” Int. J. Multiphase Flow
, 3
(6
), pp. 551
–560
, doi:10.1016/0301-9322(77)90029-5.9.
Rietema
, K.
, and Van Den Akker
, H. E. A.
, 1983
, “On the Momentum Equations in Dispersed Two-Phase Systems
,” Int. J. Multiphase Flow
, 9
(1
), pp. 21
–36
, 10.1016/0301-9322(83)90004-6.10.
Prosperetti
, A.
, and Jones
, A. V.
, 1984
, “Pressure Forces in Disperse Two-Phase Flow
,” Int. J. Multiphase Flow
, 10
(4
), pp. 425
–440
, doi:10.1016/0301-9322(84)90054-5.11.
Jones
, A. V.
, and Prosperetti
, A.
, 1985
, “On the Suitability of First-Order Differential Models for Two-Phase Flow Prediction
,” Int. J. Multiphase Flow
, 11
(2
), pp. 133
–148
, doi:10.1016/0301-9322(85)90041-2.12.
Okawa
, T.
, and Kataoka
, I.
, 2000
, “Mathematical Well-Posedness of a Two-Fluid Equations for Bubbly Two-Phase Flow
,” Trans. JSME B
, 66
(646
), pp. 1281
–1287
.13.
Okawa
, T.
, and Kataoka
, I.
, 2000
, “Characteristics and Stability of a Two-Fluid Model for Bubbly Two-Phase Flow
,” Proceedings of the 8th International Conference on Nuclear Engineering, ICONE-8058
, Baltimore, MD
, April 2–6
.14.
Akimoto
, H.
, Abe
, Y.
, Ohnuki
, A.
, and Murao
, Y.
, 1991
, “MINI-TRAC Code: A Driver Program for Assessment of Constitutive Equations of Two-Fluid Model
,” Japan Atomic Energy Research Institute
, Ibaraki, Japan, .15.
Japan Nuclear Energy Safety Organization
, 2008
, “Analysis of RIA Using a Three-Dimensional Code of Neutron Kinetics and Thermal-Hydraulics
,” Japan Nuclear Energy Safety Organization
, Tokyo, Japan, .16.
Mahaffy
, J.
, 1982
, “A Stability-Enhancing Two-Step Method for Fluid Flow Calculations
,” J. Comput. Phys.
, 46
(3
), pp. 329
–341
, doi:10.1016/0021-9991(82)90019-5.17.
Ransom
, V. H.
, et al, 1985
, RELAP5/MOD2 Code Manual
, Idaho National Engineering Laboratory
, Idaho, .18.
Liles
, D. R.
, et al, 1988
, “TRAC-PF1/MOD1, Correlations and Models
,” Los Alamos National Laboratory
, New Mexico, .19.
Borkowski
, J. A.
, Giles
, M. M.
, Wade
, N. L.
, Shumway
, R. W.
, and Rouhani
, S. Z.
, 1992
, TRAC-BF1/MOD1: An Advanced Best-Estimate Computer Program for BWR Accident Analysis. Model Description
, Idaho National Engineering Laboratory
, Idaho, .20.
Collier
, J. G.
, and Thome
, J. R.
, 1994
, Convective Boiling and Condensation
, Oxford University Press
, Oxford, UK
, Chap. VII, ISBN-13: 978-0198562962.21.
Lahey
, R. T.
, 1978
, “A Mechanistic Subcooled Boiling Model
,” Proceedings of the 6th International Heat Transfer Conference
, Toronto, Canada
, Aug. 7–11
, pp. 293
–297
.22.
Bestion
, D.
, 1990
, “The Physical Closure Laws in the CATHARE Code
,” Nucl. Eng. Des.
, 124
(3
), pp. 229
–245
, doi:10.1016/0029-5493(90)90294-8.Copyright © 2015 by ASME
You do not currently have access to this content.