The appropriate description of heat transfer to coolants at the supercritical state is limited by the current understanding. Thus, this poses one of the main challenges in the development of supercritical-fluids applications for Generation-IV reactors. Since the thermodynamic critical point of water is much higher than that of carbon dioxide (CO2), it is more affordable to run heat-transfer experiments in supercritical CO2. The data for supercritical CO2 can be later scaled and used for supercritical water-based reactor designs. The objective of this paper is, therefore, to discuss the basis for comparison of relatively recent experimental data on supercritical CO2 obtained at the facilities of the Korea Atomic Energy Research Institute (KAERI) and Chalk River Laboratories (CRL) of the Atomic Energy of Canada Limited (AECL). Based on the available instrumental error, a thorough analysis of experimental errors in wall- and bulk-fluid temperatures and heat transfer coefficient was conducted. A revised heat-transfer correlation for the CRL data is presented. A dimensional criterion for the onset of the deteriorated heat transfer in the form of a linear relation between heat flux and mass flux is proposed. A preliminary heat-transfer correlation for the joint CRL and KAERI datasets is presented.

References

References
1.
Miropolskiy
,
Z. L.
, and
Shitsman
,
M. E.
,
1957
, “
Heat Transfer to Water and Steam at Variable Specific Heat (at Near-Critical Region)
,”
J. Tech. Phys.
,
XXVII
(
10
), pp.
2359
2372
(In Russian).
2.
Shitsman
,
M. E.
,
1959
, “
Heat Transfer to Water, Oxygen and Carbon Dioxide in Near Critical Region
,”
Therm. Eng.
,
1
(
1
), pp.
68
72
(in Russian).
3.
Bishop
,
A. A.
,
Sandberg
,
R. O.
, and
Tong
,
L. S.
,
1964
, “
Forced Convection Heat Transfer to Water at Near-Critical Temperatures and Supercritical Pressures
,” ,
Westinghouse Electric Corporation, Atomic Power Division
, December, Pittsburgh, PA, 85 pp.
4.
Swenson
,
H. S.
,
Carver
,
J. R.
, and
Kakarala
,
C. R.
,
1965
, “
Heat Transfer to Supercritical Water in Smooth-Bore Tubes
,”
J. Heat Transfer Trans. ASME Ser. C
,
87
(
4
), pp.
477
484
.
5.
Ornatskiy
,
A. P.
,
Glushchenko
,
L. F.
, and
Kalachev
,
S. I.
,
1971
, “
Heat Transfer with Rising and Falling Flows of Water in Tubes of Small Diameter at Supercritical Pressures
,”
Therm. Eng.
,
18
(
5
), pp.
137
141
.
6.
Yamagata
,
K.
,
Nishikawa
,
K.
,
Hasegawa
,
S.
, et al. ,
1972
, “
Forced Convective Heat Transfer to Supercritical Water Flowing in Tubes
,”
Int. J. Heat Mass Transfer
,
15
(
12
), pp.
2575
2593
.10.1016/0017-9310(72)90148-2
7.
Pioro
,
I. L.
, and
Duffey
,
R. B.
,
2007
,
Heat Transfer and Hydraulic Resistance at Supercritical Pressures in Power Engineering Applications
,
ASME Press
,
New York, NY
,
334
p.
8.
Cheng
,
X.
, and
Schulenberg
,
T.
,
2001
,
Heat Transfer at Supercritical Pressures: Literature Review and Application to a HPLWR, Forschungszentrum Karlsruhe
, Technik und Umwelt, Wissenschaftliche Berichte, FZKA 6609,
Institute für Kern- und Energietechnik
, May,
45
pp.
9.
Groeneveld
,
D.
,
Tavoularis
,
S.
,
Gudla
,
P.
,
Yang
,
S.
, and
Leung
,
L. K. H.
,
2007
, “
Analytical and Experimental Program of Supercritical Heat Transfer Research at the University of Ottawa
,”
Proceedings of the 3rd International Symposium on SCWR—Design and Technology (ISSCWR-3)
,
Shanghai, China
,
Mar. 12–15
, Paper No. 17, pp. 
380
391
.
10.
Cleveland
,
J.
,
Nusret
,
A.
, and
Duffey
,
R.
,
2007
, “
Status and Plan for the IAEA Coordinated Research Programme on Heat Transfer Behaviour and Thermo-hydraulics Code Testing for SuperCritical Water-Cooled Reactors
,”
Proceedings of the 3rd International Symposium on SCWR—Design and Technology (ISSCWR-3)
,
Shanghai, China
,
Mar. 12–15
, Paper No. I005, pp.
138
149
.
11.
Jackson
,
J. D.
, and
Hall
W. B.
,
1979
, “
Forced Convection Heat Transfer to Fluids at Supercritical Pressure
,”
Turbulent Forced Convection in Channels and Bundles
(Vol.
2
),
S. Kakaç
and
D. B. Spalding
, eds.,
Hemisphere Publishing Corp.
,
New York, NY
, pp. 
563
612
.
12.
Gorban
,
L. M.
,
Pomet’ko
,
R. S.
, and
Khryaschev
,
O. A.
,
1990
, “
Modeling of Water Heat Transfer with Freon of Supercritical Pressure
,” ,
Institute of Physics and Power Engineering (ФЭИ)
, Obninsk, Russia,
19
pp (in Russian).
13.
Sharabi
,
M.
,
Ambrosini
,
W.
,
Forgione
,
N.
, and
He
,
S.
,
2007
, “
Prediction of Experimental Data on Heat Transfer to Supercritical Water with Two-Equation Turbulence Models
,”
Proceedings of the 3rd International Symposium on SCWR—Design and Technology (ISSCWR-3)
,
Shanghai, China
,
Mar. 12–15
, Paper No. 28, pp.
413
428
.
14.
Sharabi
,
M.
,
Manera
,
A.
, and
Andreani
,
M.
,
2009
, “
Implementation of Improved Heat Transfer Correlations in RELAP5 and Application to HPLWR
,”
Proceedings of the 4th International Symposium on Supercritical Water-Cooled Reactors (ISSCWR-4)
,
Heidelberg, Germany
,
Mar. 8–11
, Paper No. 79,
12
pp.
15.
Gu
,
H. Y.
,
Cheng
,
X.
, and
Yang
,
Y. H.
,
2009
, “
CFD Study on Heat Transfer Deterioration Phenomenon in Supercritical Water through Vertical Tube
,”
Proceedings of the 4th International Symposium on Supercritical Water-Cooled Reactors (ISSCWR-4)
,
Heidelberg, Germany
,
Mar. 8–11
, Paper No. 22,
17
pp.
16.
Shams
,
A.
,
Visser
,
D. C.
, and
Roelofs
,
F.
,
2011
, “
Influence of Numerical Tools on the Flow and Heat Transfer of Supercritical Water
,”
Proceedings of the 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-14)
,
Toronto, Canada
,
Sept. 25–29
, Paper No. 445,
12
p.
17.
Jaromin
,
M.
, and
Anglart
,
H.
,
2011
, “
Sensitivity Analysis of Heated Wall Temperature and Velocity Distribution in CFD Simulations of the Upward Flow of Supercritical Water
,”
Proceedings of the 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-14)
,
Toronto, Canada
,
Sept. 25–29
, Paper No. 231,
17
p.
18.
Shitsman
,
M. E.
,
1963
, “
Impairment of the Heat Transmission at Supercritical Pressures
,”
High Temp.
,
1
(
2
), pp.
237
244
.
19.
Pismenny
,
E. N.
,
Razumovskiy
,
V. G.
,
Maevskiy
,
A. E.
, and
Pioro
,
I.
,
2006
, “
Heat Transfer to Supercritical Water in Gaseous State or Affected by Mixed Convection in Vertical Tubes
,”
Proceedings of ICONE-14
,
Miami, FL
,
July 17–20
.
20.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2013
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.0
,”
National Institute of Standards and Technology, Standard Reference Data Program
, Gaithersburg, MD.
21.
Wagner
,
W.
, and
Pruss
,
A.
,
2002
, “
The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use
,”
J. Phys. Chem. Ref. Data
,
31
(
2
), pp.
387
535
.
22.
Span
,
R.
, and
Wagner
,
W.
,
1996
, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa
,”
J. Phys. Chem. Ref. Data
,
25
(
6
), pp.
1509
1596
.10.1063/1.555991
23.
Pioro
,
I.
,
Gupta
,
S.
, and
Mokry
,
S.
,
2012
, “
Heat-Transfer Correlations for Supercritical Water and Carbon Dioxide Flowing Upward in Vertical Bare Tubes
,”
Proceedings of ASME 2012 Summer Heat Transfer Conference
,
Rio Grande, Puerto Rico
,
July 8–12
, Paper No. 58514,
12
pp.
24.
Krasnoshchekov
,
E. A.
, and
Protopopov
,
V. S.
,
1959
, “
Heat Exchange in the Supercritical Region During the Flow of Carbon Dioxide and Water
,”
Therm. Eng.
,
6
(
12
), pp.
26
30
(In Russian).
25.
Vargaftik
,
N. B.
,
1955
, Proceedings of Moscow Aviation Institute (in Russian), Vol. 51 (Н.Б. Варгафтик. Труды МАИ, вып. 51, Оборонгиз, 1955) (as cited in the paper by Krasnoshchekov and Protopopov, 1959).
26.
Griem
,
H.
,
1996
,
A New Procedure for the Prediction of Forced Convection Heat Transfer at Near- and Supercritical Pressure, Heat and Mass Transfer (Warme- und Stoffubertragung)
, Springer-Verlag Publishing House,
31
(
5
), pp.
301
305
.
27.
Jackson
,
J. D.
,
2008
, “
A Semi-Empirical Model of Turbulent Convective Heat Transfer to Fluids at Supercritical Pressures
,”
Proceedings of the ICONE-16
,
Orlando, FL
,
May 11–15, 2008
, Paper No. 48914,
11
pp.
28.
Mokry
,
S.
,
Farah
,
A.
,
King
,
K.
, et al. ,
2009
, “
Development of a Supercritical Water Heat-Transfer Correlation for Vertical Bare Tubes
,”
Proceedings of the International Conference “Nuclear Energy for New Europe
,
Bled, Slovenia
,
Sept. 14–17
, Paper No. 210,
14
pp.
29.
Gupta
,
S.
,
Mokry
,
S.
, and
Pioro
,
I.
,
2011
, “
Developing a Heat-Transfer Correlation for Supercritical-Water Flow in Vertical Bare Tubes and Its Application in SCWRS
,”
Proceedings of the ICONE-19
,
Osaka, Japan
,
Oct. 24–25
, Paper No. 43503,
11
pp.
30.
Mokry
,
S.
,
Pioro
,
I.
,
Farah
,
A.
, et al. ,
2011
, “
Development of Supercritical Water Heat-Transfer Correlation for Vertical Bare Tubes
,”
Nucl. Eng. Des.
,
241
(
4
), pp.
1126
1136
.10.1016/j.nucengdes.2010.06.012
31.
Gupta
,
S.
,
McGillivray
,
D.
,
Surendran
,
P.
,
Trevani
,
L.
, and
Pioro
,
I.
,
2012
, “
Developing Heat-Transfer Correlations for Supercritical CO2 Flowing in Vertical Bare Tubes
,”
Proceedings of ICONE20-POWER2012
,
Anaheim, CA
,
July 30–Aug. 3
, Paper No. 54626,
13
pp.
32.
Saltanov
,
E.
,
Pioro
,
I.
, and
Harvel
,
G.
,
2013
, “
Preliminary Investigation of Heat-Transfer Correlation for Upward Flow of CO2 at Subcritical Pressure
,”
Proceedings of ICONE-21
,
Chengdu, China
,
July 30–Aug. 3
, Paper No. 16399,
10
pp.
33.
Bae
,
Y. Y.
, and
Kim
,
H. Y.
,
2009
, “
Convective Heat Transfer to CO2 at a Supercritical Pressure Flowing Vertically Upward in Tubes and Annular Channel
,”
Exp. Therm. Fluid Sci.
,
33
(
2
), pp.
329
339
.10.1016/j.expthermflusci.2008.10.002
34.
Preda
,
T.
,
Saltanov
,
E.
,
Gabriel
,
K.
,
Pioro
,
I.
,
2012
, “
Development of a Heat Transfer Correlation for Supercritical CO2 Based on Multiple Data Sets
,”
Proceedings of ICONE20-POWER2012
,
Anaheim, CA
,
July 30–Aug. 3
, Paper No. 54516,
7
pp.
35.
Kurganov
,
V. A.
,
Zeygarnik
,
Y. A.
,
Maslakova
,
I. V.
, and
Ivanov
,
F. P.
,
2011
, “
Heat Transfer and Hydraulic Resistance in Tubes at the Flow of Coolant at Supercritical Pressures
,” Preprint No. 2-507,
Institute of High Temperatures, Russian Academy of Sciences
, Moscow,
168
pp. (in Russian).
36.
Pioro
,
I.
,
Mokry
,
S.
, and
Draper
,
S.
,
2011
, “
Specifics of Thermophysical Properties and Forced-Convective Heat Transfer at Critical and Supercritical Pressures
,”
Rev. Chem. Eng.
,
27
(
3–4
), pp.
191
214
.
37.
Vikhrev
,
Y. V.
,
Barulin
,
Y. D.
, and
Kon’kov
,
A. S.
,
1967
, “
A Study of Heat Transfer in Vertical Tubes at Supercritical Pressures
,”
Therm. Eng.
,
14
(
9
), pp.
116
119
.
38.
Styrikovich
,
M. A.
,
Margulova
,
T. K.
, and
Miropol’skii
,
Z. L.
,
1967
, “
Problems in the Development of Designs of Supercritical Boilers
,”
Therm. Eng.
,
13
(
7
), pp.
61
68
.
39.
Yang
,
S. K.
, and
Khartabil
,
H. F.
,
2005
, “
Normal and Deteriorated Heat Transfer Correlations for Supercritical Fluids
,”
Trans. Amer. Nucl. Soc.
, Washington, DC, Nov. 13–17, Vol. 
93
, pp.
635
637
.
40.
Petukhov
,
B. S.,
and
Kirillov
,
P. L.
,
1958
, “
About Heat Transfer at Turbulent Fluid Flow in Tubes
,”
Therm. Eng.
,
4
, pp.
63
68
(in Russian).
You do not currently have access to this content.